|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*n<=0) return 0;
if(*incx==1 && *incy==1) vector(y,*n) += alpha * vector(x,*n); else if(*incx>0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,*incx); else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,*incx); else if(*incx<0 && *incy>0) vector(y,*n,*incy) += alpha * vector(x,*n,-*incx).reverse(); else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() += alpha * vector(x,*n,-*incx).reverse();
return 0; }
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py);
// be carefull, *incx==0 is allowed !!
if(*incx==1 && *incy==1) vector(y,*n) = vector(x,*n); else { if(*incx<0) x = x - (*n-1)*(*incx); if(*incy<0) y = y - (*n-1)*(*incy); for(int i=0;i<*n;++i) { *y = *x; x += *incx; y += *incy; } }
return 0; }
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx) { if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px);
DenseIndex ret; if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret); else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret); return ret+1; }
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx) { if(*n<=0) return 0; Scalar* x = reinterpret_cast<Scalar*>(px); DenseIndex ret; if(*incx==1) vector(x,*n).cwiseAbs().minCoeff(&ret); else vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret); return ret+1; }
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) { Scalar& a = *reinterpret_cast<Scalar*>(pa); Scalar& b = *reinterpret_cast<Scalar*>(pb); RealScalar* c = pc; Scalar* s = reinterpret_cast<Scalar*>(ps);
#if !ISCOMPLEX
Scalar r,z; Scalar aa = internal::abs(a); Scalar ab = internal::abs(b); if((aa+ab)==Scalar(0)) { *c = 1; *s = 0; r = 0; z = 0; } else { r = internal::sqrt(a*a + b*b); Scalar amax = aa>ab ? a : b; r = amax>0 ? r : -r; *c = a/r; *s = b/r; z = 1; if (aa > ab) z = *s; if (ab > aa && *c!=RealScalar(0)) z = Scalar(1)/ *c; } *pa = r; *pb = z; #else
Scalar alpha; RealScalar norm,scale; if(internal::abs(a)==RealScalar(0)) { *c = RealScalar(0); *s = Scalar(1); a = b; } else { scale = internal::abs(a) + internal::abs(b); norm = scale*internal::sqrt((internal::abs2(a/scale))+ (internal::abs2(b/scale))); alpha = a/internal::abs(a); *c = internal::abs(a)/norm; *s = alpha*internal::conj(b)/norm; a = alpha*norm; } #endif
// JacobiRotation<Scalar> r;
// r.makeGivens(a,b);
// *c = r.c();
// *s = r.s();
return 0; }
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) { if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1) vector(x,*n) *= alpha; else vector(x,*n,std::abs(*incx)) *= alpha;
return 0; }
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) { if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1) vector(y,*n).swap(vector(x,*n)); else if(*incx>0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,*incx)); else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,*incx)); else if(*incx<0 && *incy>0) vector(y,*n,*incy).swap(vector(x,*n,-*incx).reverse()); else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse().swap(vector(x,*n,-*incx).reverse());
return 1; }
|