You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

366 lines
12 KiB

  1. SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
  2. * .. Scalar Arguments ..
  3. INTEGER INCX,K,LDA,N
  4. CHARACTER DIAG,TRANS,UPLO
  5. * ..
  6. * .. Array Arguments ..
  7. COMPLEX A(LDA,*),X(*)
  8. * ..
  9. *
  10. * Purpose
  11. * =======
  12. *
  13. * CTBMV performs one of the matrix-vector operations
  14. *
  15. * x := A*x, or x := A'*x, or x := conjg( A' )*x,
  16. *
  17. * where x is an n element vector and A is an n by n unit, or non-unit,
  18. * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
  19. *
  20. * Arguments
  21. * ==========
  22. *
  23. * UPLO - CHARACTER*1.
  24. * On entry, UPLO specifies whether the matrix is an upper or
  25. * lower triangular matrix as follows:
  26. *
  27. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  28. *
  29. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  30. *
  31. * Unchanged on exit.
  32. *
  33. * TRANS - CHARACTER*1.
  34. * On entry, TRANS specifies the operation to be performed as
  35. * follows:
  36. *
  37. * TRANS = 'N' or 'n' x := A*x.
  38. *
  39. * TRANS = 'T' or 't' x := A'*x.
  40. *
  41. * TRANS = 'C' or 'c' x := conjg( A' )*x.
  42. *
  43. * Unchanged on exit.
  44. *
  45. * DIAG - CHARACTER*1.
  46. * On entry, DIAG specifies whether or not A is unit
  47. * triangular as follows:
  48. *
  49. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  50. *
  51. * DIAG = 'N' or 'n' A is not assumed to be unit
  52. * triangular.
  53. *
  54. * Unchanged on exit.
  55. *
  56. * N - INTEGER.
  57. * On entry, N specifies the order of the matrix A.
  58. * N must be at least zero.
  59. * Unchanged on exit.
  60. *
  61. * K - INTEGER.
  62. * On entry with UPLO = 'U' or 'u', K specifies the number of
  63. * super-diagonals of the matrix A.
  64. * On entry with UPLO = 'L' or 'l', K specifies the number of
  65. * sub-diagonals of the matrix A.
  66. * K must satisfy 0 .le. K.
  67. * Unchanged on exit.
  68. *
  69. * A - COMPLEX array of DIMENSION ( LDA, n ).
  70. * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  71. * by n part of the array A must contain the upper triangular
  72. * band part of the matrix of coefficients, supplied column by
  73. * column, with the leading diagonal of the matrix in row
  74. * ( k + 1 ) of the array, the first super-diagonal starting at
  75. * position 2 in row k, and so on. The top left k by k triangle
  76. * of the array A is not referenced.
  77. * The following program segment will transfer an upper
  78. * triangular band matrix from conventional full matrix storage
  79. * to band storage:
  80. *
  81. * DO 20, J = 1, N
  82. * M = K + 1 - J
  83. * DO 10, I = MAX( 1, J - K ), J
  84. * A( M + I, J ) = matrix( I, J )
  85. * 10 CONTINUE
  86. * 20 CONTINUE
  87. *
  88. * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  89. * by n part of the array A must contain the lower triangular
  90. * band part of the matrix of coefficients, supplied column by
  91. * column, with the leading diagonal of the matrix in row 1 of
  92. * the array, the first sub-diagonal starting at position 1 in
  93. * row 2, and so on. The bottom right k by k triangle of the
  94. * array A is not referenced.
  95. * The following program segment will transfer a lower
  96. * triangular band matrix from conventional full matrix storage
  97. * to band storage:
  98. *
  99. * DO 20, J = 1, N
  100. * M = 1 - J
  101. * DO 10, I = J, MIN( N, J + K )
  102. * A( M + I, J ) = matrix( I, J )
  103. * 10 CONTINUE
  104. * 20 CONTINUE
  105. *
  106. * Note that when DIAG = 'U' or 'u' the elements of the array A
  107. * corresponding to the diagonal elements of the matrix are not
  108. * referenced, but are assumed to be unity.
  109. * Unchanged on exit.
  110. *
  111. * LDA - INTEGER.
  112. * On entry, LDA specifies the first dimension of A as declared
  113. * in the calling (sub) program. LDA must be at least
  114. * ( k + 1 ).
  115. * Unchanged on exit.
  116. *
  117. * X - COMPLEX array of dimension at least
  118. * ( 1 + ( n - 1 )*abs( INCX ) ).
  119. * Before entry, the incremented array X must contain the n
  120. * element vector x. On exit, X is overwritten with the
  121. * tranformed vector x.
  122. *
  123. * INCX - INTEGER.
  124. * On entry, INCX specifies the increment for the elements of
  125. * X. INCX must not be zero.
  126. * Unchanged on exit.
  127. *
  128. * Further Details
  129. * ===============
  130. *
  131. * Level 2 Blas routine.
  132. *
  133. * -- Written on 22-October-1986.
  134. * Jack Dongarra, Argonne National Lab.
  135. * Jeremy Du Croz, Nag Central Office.
  136. * Sven Hammarling, Nag Central Office.
  137. * Richard Hanson, Sandia National Labs.
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. COMPLEX ZERO
  143. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  144. * ..
  145. * .. Local Scalars ..
  146. COMPLEX TEMP
  147. INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
  148. LOGICAL NOCONJ,NOUNIT
  149. * ..
  150. * .. External Functions ..
  151. LOGICAL LSAME
  152. EXTERNAL LSAME
  153. * ..
  154. * .. External Subroutines ..
  155. EXTERNAL XERBLA
  156. * ..
  157. * .. Intrinsic Functions ..
  158. INTRINSIC CONJG,MAX,MIN
  159. * ..
  160. *
  161. * Test the input parameters.
  162. *
  163. INFO = 0
  164. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  165. INFO = 1
  166. ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
  167. + .NOT.LSAME(TRANS,'C')) THEN
  168. INFO = 2
  169. ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
  170. INFO = 3
  171. ELSE IF (N.LT.0) THEN
  172. INFO = 4
  173. ELSE IF (K.LT.0) THEN
  174. INFO = 5
  175. ELSE IF (LDA.LT. (K+1)) THEN
  176. INFO = 7
  177. ELSE IF (INCX.EQ.0) THEN
  178. INFO = 9
  179. END IF
  180. IF (INFO.NE.0) THEN
  181. CALL XERBLA('CTBMV ',INFO)
  182. RETURN
  183. END IF
  184. *
  185. * Quick return if possible.
  186. *
  187. IF (N.EQ.0) RETURN
  188. *
  189. NOCONJ = LSAME(TRANS,'T')
  190. NOUNIT = LSAME(DIAG,'N')
  191. *
  192. * Set up the start point in X if the increment is not unity. This
  193. * will be ( N - 1 )*INCX too small for descending loops.
  194. *
  195. IF (INCX.LE.0) THEN
  196. KX = 1 - (N-1)*INCX
  197. ELSE IF (INCX.NE.1) THEN
  198. KX = 1
  199. END IF
  200. *
  201. * Start the operations. In this version the elements of A are
  202. * accessed sequentially with one pass through A.
  203. *
  204. IF (LSAME(TRANS,'N')) THEN
  205. *
  206. * Form x := A*x.
  207. *
  208. IF (LSAME(UPLO,'U')) THEN
  209. KPLUS1 = K + 1
  210. IF (INCX.EQ.1) THEN
  211. DO 20 J = 1,N
  212. IF (X(J).NE.ZERO) THEN
  213. TEMP = X(J)
  214. L = KPLUS1 - J
  215. DO 10 I = MAX(1,J-K),J - 1
  216. X(I) = X(I) + TEMP*A(L+I,J)
  217. 10 CONTINUE
  218. IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
  219. END IF
  220. 20 CONTINUE
  221. ELSE
  222. JX = KX
  223. DO 40 J = 1,N
  224. IF (X(JX).NE.ZERO) THEN
  225. TEMP = X(JX)
  226. IX = KX
  227. L = KPLUS1 - J
  228. DO 30 I = MAX(1,J-K),J - 1
  229. X(IX) = X(IX) + TEMP*A(L+I,J)
  230. IX = IX + INCX
  231. 30 CONTINUE
  232. IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
  233. END IF
  234. JX = JX + INCX
  235. IF (J.GT.K) KX = KX + INCX
  236. 40 CONTINUE
  237. END IF
  238. ELSE
  239. IF (INCX.EQ.1) THEN
  240. DO 60 J = N,1,-1
  241. IF (X(J).NE.ZERO) THEN
  242. TEMP = X(J)
  243. L = 1 - J
  244. DO 50 I = MIN(N,J+K),J + 1,-1
  245. X(I) = X(I) + TEMP*A(L+I,J)
  246. 50 CONTINUE
  247. IF (NOUNIT) X(J) = X(J)*A(1,J)
  248. END IF
  249. 60 CONTINUE
  250. ELSE
  251. KX = KX + (N-1)*INCX
  252. JX = KX
  253. DO 80 J = N,1,-1
  254. IF (X(JX).NE.ZERO) THEN
  255. TEMP = X(JX)
  256. IX = KX
  257. L = 1 - J
  258. DO 70 I = MIN(N,J+K),J + 1,-1
  259. X(IX) = X(IX) + TEMP*A(L+I,J)
  260. IX = IX - INCX
  261. 70 CONTINUE
  262. IF (NOUNIT) X(JX) = X(JX)*A(1,J)
  263. END IF
  264. JX = JX - INCX
  265. IF ((N-J).GE.K) KX = KX - INCX
  266. 80 CONTINUE
  267. END IF
  268. END IF
  269. ELSE
  270. *
  271. * Form x := A'*x or x := conjg( A' )*x.
  272. *
  273. IF (LSAME(UPLO,'U')) THEN
  274. KPLUS1 = K + 1
  275. IF (INCX.EQ.1) THEN
  276. DO 110 J = N,1,-1
  277. TEMP = X(J)
  278. L = KPLUS1 - J
  279. IF (NOCONJ) THEN
  280. IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  281. DO 90 I = J - 1,MAX(1,J-K),-1
  282. TEMP = TEMP + A(L+I,J)*X(I)
  283. 90 CONTINUE
  284. ELSE
  285. IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J))
  286. DO 100 I = J - 1,MAX(1,J-K),-1
  287. TEMP = TEMP + CONJG(A(L+I,J))*X(I)
  288. 100 CONTINUE
  289. END IF
  290. X(J) = TEMP
  291. 110 CONTINUE
  292. ELSE
  293. KX = KX + (N-1)*INCX
  294. JX = KX
  295. DO 140 J = N,1,-1
  296. TEMP = X(JX)
  297. KX = KX - INCX
  298. IX = KX
  299. L = KPLUS1 - J
  300. IF (NOCONJ) THEN
  301. IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
  302. DO 120 I = J - 1,MAX(1,J-K),-1
  303. TEMP = TEMP + A(L+I,J)*X(IX)
  304. IX = IX - INCX
  305. 120 CONTINUE
  306. ELSE
  307. IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J))
  308. DO 130 I = J - 1,MAX(1,J-K),-1
  309. TEMP = TEMP + CONJG(A(L+I,J))*X(IX)
  310. IX = IX - INCX
  311. 130 CONTINUE
  312. END IF
  313. X(JX) = TEMP
  314. JX = JX - INCX
  315. 140 CONTINUE
  316. END IF
  317. ELSE
  318. IF (INCX.EQ.1) THEN
  319. DO 170 J = 1,N
  320. TEMP = X(J)
  321. L = 1 - J
  322. IF (NOCONJ) THEN
  323. IF (NOUNIT) TEMP = TEMP*A(1,J)
  324. DO 150 I = J + 1,MIN(N,J+K)
  325. TEMP = TEMP + A(L+I,J)*X(I)
  326. 150 CONTINUE
  327. ELSE
  328. IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J))
  329. DO 160 I = J + 1,MIN(N,J+K)
  330. TEMP = TEMP + CONJG(A(L+I,J))*X(I)
  331. 160 CONTINUE
  332. END IF
  333. X(J) = TEMP
  334. 170 CONTINUE
  335. ELSE
  336. JX = KX
  337. DO 200 J = 1,N
  338. TEMP = X(JX)
  339. KX = KX + INCX
  340. IX = KX
  341. L = 1 - J
  342. IF (NOCONJ) THEN
  343. IF (NOUNIT) TEMP = TEMP*A(1,J)
  344. DO 180 I = J + 1,MIN(N,J+K)
  345. TEMP = TEMP + A(L+I,J)*X(IX)
  346. IX = IX + INCX
  347. 180 CONTINUE
  348. ELSE
  349. IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J))
  350. DO 190 I = J + 1,MIN(N,J+K)
  351. TEMP = TEMP + CONJG(A(L+I,J))*X(IX)
  352. IX = IX + INCX
  353. 190 CONTINUE
  354. END IF
  355. X(JX) = TEMP
  356. JX = JX + INCX
  357. 200 CONTINUE
  358. END IF
  359. END IF
  360. END IF
  361. *
  362. RETURN
  363. *
  364. * End of CTBMV .
  365. *
  366. END