You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
8.1 KiB

  1. SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
  2. * .. Scalar Arguments ..
  3. COMPLEX ALPHA,BETA
  4. INTEGER INCX,INCY,N
  5. CHARACTER UPLO
  6. * ..
  7. * .. Array Arguments ..
  8. COMPLEX AP(*),X(*),Y(*)
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CHPMV performs the matrix-vector operation
  15. *
  16. * y := alpha*A*x + beta*y,
  17. *
  18. * where alpha and beta are scalars, x and y are n element vectors and
  19. * A is an n by n hermitian matrix, supplied in packed form.
  20. *
  21. * Arguments
  22. * ==========
  23. *
  24. * UPLO - CHARACTER*1.
  25. * On entry, UPLO specifies whether the upper or lower
  26. * triangular part of the matrix A is supplied in the packed
  27. * array AP as follows:
  28. *
  29. * UPLO = 'U' or 'u' The upper triangular part of A is
  30. * supplied in AP.
  31. *
  32. * UPLO = 'L' or 'l' The lower triangular part of A is
  33. * supplied in AP.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * N - INTEGER.
  38. * On entry, N specifies the order of the matrix A.
  39. * N must be at least zero.
  40. * Unchanged on exit.
  41. *
  42. * ALPHA - COMPLEX .
  43. * On entry, ALPHA specifies the scalar alpha.
  44. * Unchanged on exit.
  45. *
  46. * AP - COMPLEX array of DIMENSION at least
  47. * ( ( n*( n + 1 ) )/2 ).
  48. * Before entry with UPLO = 'U' or 'u', the array AP must
  49. * contain the upper triangular part of the hermitian matrix
  50. * packed sequentially, column by column, so that AP( 1 )
  51. * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  52. * and a( 2, 2 ) respectively, and so on.
  53. * Before entry with UPLO = 'L' or 'l', the array AP must
  54. * contain the lower triangular part of the hermitian matrix
  55. * packed sequentially, column by column, so that AP( 1 )
  56. * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  57. * and a( 3, 1 ) respectively, and so on.
  58. * Note that the imaginary parts of the diagonal elements need
  59. * not be set and are assumed to be zero.
  60. * Unchanged on exit.
  61. *
  62. * X - COMPLEX array of dimension at least
  63. * ( 1 + ( n - 1 )*abs( INCX ) ).
  64. * Before entry, the incremented array X must contain the n
  65. * element vector x.
  66. * Unchanged on exit.
  67. *
  68. * INCX - INTEGER.
  69. * On entry, INCX specifies the increment for the elements of
  70. * X. INCX must not be zero.
  71. * Unchanged on exit.
  72. *
  73. * BETA - COMPLEX .
  74. * On entry, BETA specifies the scalar beta. When BETA is
  75. * supplied as zero then Y need not be set on input.
  76. * Unchanged on exit.
  77. *
  78. * Y - COMPLEX array of dimension at least
  79. * ( 1 + ( n - 1 )*abs( INCY ) ).
  80. * Before entry, the incremented array Y must contain the n
  81. * element vector y. On exit, Y is overwritten by the updated
  82. * vector y.
  83. *
  84. * INCY - INTEGER.
  85. * On entry, INCY specifies the increment for the elements of
  86. * Y. INCY must not be zero.
  87. * Unchanged on exit.
  88. *
  89. * Further Details
  90. * ===============
  91. *
  92. * Level 2 Blas routine.
  93. *
  94. * -- Written on 22-October-1986.
  95. * Jack Dongarra, Argonne National Lab.
  96. * Jeremy Du Croz, Nag Central Office.
  97. * Sven Hammarling, Nag Central Office.
  98. * Richard Hanson, Sandia National Labs.
  99. *
  100. * =====================================================================
  101. *
  102. * .. Parameters ..
  103. COMPLEX ONE
  104. PARAMETER (ONE= (1.0E+0,0.0E+0))
  105. COMPLEX ZERO
  106. PARAMETER (ZERO= (0.0E+0,0.0E+0))
  107. * ..
  108. * .. Local Scalars ..
  109. COMPLEX TEMP1,TEMP2
  110. INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  111. * ..
  112. * .. External Functions ..
  113. LOGICAL LSAME
  114. EXTERNAL LSAME
  115. * ..
  116. * .. External Subroutines ..
  117. EXTERNAL XERBLA
  118. * ..
  119. * .. Intrinsic Functions ..
  120. INTRINSIC CONJG,REAL
  121. * ..
  122. *
  123. * Test the input parameters.
  124. *
  125. INFO = 0
  126. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  127. INFO = 1
  128. ELSE IF (N.LT.0) THEN
  129. INFO = 2
  130. ELSE IF (INCX.EQ.0) THEN
  131. INFO = 6
  132. ELSE IF (INCY.EQ.0) THEN
  133. INFO = 9
  134. END IF
  135. IF (INFO.NE.0) THEN
  136. CALL XERBLA('CHPMV ',INFO)
  137. RETURN
  138. END IF
  139. *
  140. * Quick return if possible.
  141. *
  142. IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  143. *
  144. * Set up the start points in X and Y.
  145. *
  146. IF (INCX.GT.0) THEN
  147. KX = 1
  148. ELSE
  149. KX = 1 - (N-1)*INCX
  150. END IF
  151. IF (INCY.GT.0) THEN
  152. KY = 1
  153. ELSE
  154. KY = 1 - (N-1)*INCY
  155. END IF
  156. *
  157. * Start the operations. In this version the elements of the array AP
  158. * are accessed sequentially with one pass through AP.
  159. *
  160. * First form y := beta*y.
  161. *
  162. IF (BETA.NE.ONE) THEN
  163. IF (INCY.EQ.1) THEN
  164. IF (BETA.EQ.ZERO) THEN
  165. DO 10 I = 1,N
  166. Y(I) = ZERO
  167. 10 CONTINUE
  168. ELSE
  169. DO 20 I = 1,N
  170. Y(I) = BETA*Y(I)
  171. 20 CONTINUE
  172. END IF
  173. ELSE
  174. IY = KY
  175. IF (BETA.EQ.ZERO) THEN
  176. DO 30 I = 1,N
  177. Y(IY) = ZERO
  178. IY = IY + INCY
  179. 30 CONTINUE
  180. ELSE
  181. DO 40 I = 1,N
  182. Y(IY) = BETA*Y(IY)
  183. IY = IY + INCY
  184. 40 CONTINUE
  185. END IF
  186. END IF
  187. END IF
  188. IF (ALPHA.EQ.ZERO) RETURN
  189. KK = 1
  190. IF (LSAME(UPLO,'U')) THEN
  191. *
  192. * Form y when AP contains the upper triangle.
  193. *
  194. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  195. DO 60 J = 1,N
  196. TEMP1 = ALPHA*X(J)
  197. TEMP2 = ZERO
  198. K = KK
  199. DO 50 I = 1,J - 1
  200. Y(I) = Y(I) + TEMP1*AP(K)
  201. TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
  202. K = K + 1
  203. 50 CONTINUE
  204. Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
  205. KK = KK + J
  206. 60 CONTINUE
  207. ELSE
  208. JX = KX
  209. JY = KY
  210. DO 80 J = 1,N
  211. TEMP1 = ALPHA*X(JX)
  212. TEMP2 = ZERO
  213. IX = KX
  214. IY = KY
  215. DO 70 K = KK,KK + J - 2
  216. Y(IY) = Y(IY) + TEMP1*AP(K)
  217. TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
  218. IX = IX + INCX
  219. IY = IY + INCY
  220. 70 CONTINUE
  221. Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
  222. JX = JX + INCX
  223. JY = JY + INCY
  224. KK = KK + J
  225. 80 CONTINUE
  226. END IF
  227. ELSE
  228. *
  229. * Form y when AP contains the lower triangle.
  230. *
  231. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  232. DO 100 J = 1,N
  233. TEMP1 = ALPHA*X(J)
  234. TEMP2 = ZERO
  235. Y(J) = Y(J) + TEMP1*REAL(AP(KK))
  236. K = KK + 1
  237. DO 90 I = J + 1,N
  238. Y(I) = Y(I) + TEMP1*AP(K)
  239. TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
  240. K = K + 1
  241. 90 CONTINUE
  242. Y(J) = Y(J) + ALPHA*TEMP2
  243. KK = KK + (N-J+1)
  244. 100 CONTINUE
  245. ELSE
  246. JX = KX
  247. JY = KY
  248. DO 120 J = 1,N
  249. TEMP1 = ALPHA*X(JX)
  250. TEMP2 = ZERO
  251. Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
  252. IX = JX
  253. IY = JY
  254. DO 110 K = KK + 1,KK + N - J
  255. IX = IX + INCX
  256. IY = IY + INCY
  257. Y(IY) = Y(IY) + TEMP1*AP(K)
  258. TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
  259. 110 CONTINUE
  260. Y(JY) = Y(JY) + ALPHA*TEMP2
  261. JX = JX + INCX
  262. JY = JY + INCY
  263. KK = KK + (N-J+1)
  264. 120 CONTINUE
  265. END IF
  266. END IF
  267. *
  268. RETURN
  269. *
  270. * End of CHPMV .
  271. *
  272. END