|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) { typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); static functype func[4];
static bool init = false; if(!init) { for(int k=0; k<4; ++k) func[k] = 0;
func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run); func[TR ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run); func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run);
init = true; }
Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* b = reinterpret_cast<Scalar*>(pb); Scalar* c = reinterpret_cast<Scalar*>(pc); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0; if(OP(*opa)==INVALID) info = 1; else if(*m<0) info = 2; else if(*n<0) info = 3; else if(*lda<std::max(1,*m)) info = 6; else if(*incb==0) info = 8; else if(*incc==0) info = 11; if(info) return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) return 0;
int actual_m = *m; int actual_n = *n; int code = OP(*opa); if(code!=NOTR) std::swap(actual_m,actual_n);
Scalar* actual_b = get_compact_vector(b,actual_n,*incb); Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
if(beta!=Scalar(1)) { if(beta==Scalar(0)) vector(actual_c, actual_m).setZero(); else vector(actual_c, actual_m) *= beta; }
if(code>=4 || func[code]==0) return 0;
func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
if(actual_b!=b) delete[] actual_b; if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
return 1; }
int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) { typedef void (*functype)(int, const Scalar *, int, Scalar *); static functype func[16];
static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0;
func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run);
func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run);
func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
init = true; }
Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* b = reinterpret_cast<Scalar*>(pb);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*lda<std::max(1,*n)) info = 6; else if(*incb==0) info = 8; if(info) return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
Scalar* actual_b = get_compact_vector(b,*n,*incb);
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); func[code](*n, a, *lda, actual_b);
if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
return 0; }
int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) { typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&); static functype func[16];
static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0;
func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
init = true; }
Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* b = reinterpret_cast<Scalar*>(pb);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*lda<std::max(1,*n)) info = 6; else if(*incb==0) info = 8; if(info) return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
if(*n==0) return 1;
Scalar* actual_b = get_compact_vector(b,*n,*incb); Matrix<Scalar,Dynamic,1> res(*n); res.setZero();
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0;
func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
copy_back(res.data(),b,*n,*incb); if(actual_b!=b) delete[] actual_b;
return 1; }
/** GBMV performs one of the matrix-vector operations
* * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, * * where alpha and beta are scalars, x and y are vectors and A is an * m by n band matrix, with kl sub-diagonals and ku super-diagonals. */ int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); Scalar beta = *reinterpret_cast<Scalar*>(pbeta); int coeff_rows = *kl+*ku+1; int info = 0; if(OP(*trans)==INVALID) info = 1; else if(*m<0) info = 2; else if(*n<0) info = 3; else if(*kl<0) info = 4; else if(*ku<0) info = 5; else if(*lda<coeff_rows) info = 8; else if(*incx==0) info = 10; else if(*incy==0) info = 13; if(info) return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6); if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) return 0; int actual_m = *m; int actual_n = *n; if(OP(*trans)!=NOTR) std::swap(actual_m,actual_n); Scalar* actual_x = get_compact_vector(x,actual_n,*incx); Scalar* actual_y = get_compact_vector(y,actual_m,*incy); if(beta!=Scalar(1)) { if(beta==Scalar(0)) vector(actual_y, actual_m).setZero(); else vector(actual_y, actual_m) *= beta; } MatrixType mat_coeffs(a,coeff_rows,*n,*lda); int nb = std::min(*n,(*m)+(*ku)); for(int j=0; j<nb; ++j) { int start = std::max(0,j - *ku); int end = std::min((*m)-1,j + *kl); int len = end - start + 1; int offset = (*ku) - j + start; if(OP(*trans)==NOTR) vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); else if(OP(*trans)==TR) actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); else actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); } if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); return 0; }
#if 0
/** TBMV performs one of the matrix-vector operations
* * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) { Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); int coeff_rows = *k + 1; int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*k<0) info = 5; else if(*lda<coeff_rows) info = 7; else if(*incx==0) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6); if(*n==0) return 0; int actual_n = *n; Scalar* actual_x = get_compact_vector(x,actual_n,*incx); MatrixType mat_coeffs(a,coeff_rows,*n,*lda); int ku = UPLO(*uplo)==UPPER ? *k : 0; int kl = UPLO(*uplo)==LOWER ? *k : 0; for(int j=0; j<*n; ++j) { int start = std::max(0,j - ku); int end = std::min((*m)-1,j + kl); int len = end - start + 1; int offset = (ku) - j + start; if(OP(*trans)==NOTR) vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); else if(OP(*trans)==TR) actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); else actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); } if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); return 0; } #endif
/** DTBSV solves one of the systems of equations
* * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular band matrix, with ( k + 1 ) * diagonals. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. */ int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) { typedef void (*functype)(int, int, const Scalar *, int, Scalar *); static functype func[16];
static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0;
func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run);
func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run);
func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run);
init = true; }
Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); int coeff_rows = *k+1; int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*op)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*k<0) info = 5; else if(*lda<coeff_rows) info = 7; else if(*incx==0) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6); if(*n==0 || (*k==0 && DIAG(*diag)==UNIT)) return 0; int actual_n = *n; Scalar* actual_x = get_compact_vector(x,actual_n,*incx); int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0;
func[code](*n, *k, a, *lda, actual_x); if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); return 0; }
/** DTPMV performs one of the matrix-vector operations
* * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. */ int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) { typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar); static functype func[16];
static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0;
func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run);
init = true; }
Scalar* ap = reinterpret_cast<Scalar*>(pap); Scalar* x = reinterpret_cast<Scalar*>(px);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*incx==0) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6);
if(*n==0) return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx); Matrix<Scalar,Dynamic,1> res(*n); res.setZero();
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); if(code>=16 || func[code]==0) return 0;
func[code](*n, ap, actual_x, res.data(), Scalar(1));
copy_back(res.data(),x,*n,*incx); if(actual_x!=x) delete[] actual_x;
return 1; }
/** DTPSV solves one of the systems of equations
* * A*x = b, or A'*x = b, * * where b and x are n element vectors and A is an n by n unit, or * non-unit, upper or lower triangular matrix, supplied in packed form. * * No test for singularity or near-singularity is included in this * routine. Such tests must be performed before calling this routine. */ int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) { typedef void (*functype)(int, const Scalar*, Scalar*); static functype func[16];
static bool init = false; if(!init) { for(int k=0; k<16; ++k) func[k] = 0;
func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run);
func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run);
func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run);
func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run);
init = true; }
Scalar* ap = reinterpret_cast<Scalar*>(pap); Scalar* x = reinterpret_cast<Scalar*>(px);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(OP(*opa)==INVALID) info = 2; else if(DIAG(*diag)==INVALID) info = 3; else if(*n<0) info = 4; else if(*incx==0) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6);
Scalar* actual_x = get_compact_vector(x,*n,*incx);
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); func[code](*n, ap, actual_x);
if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx);
return 1; }
|