|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>
#include <algorithm>
using namespace std;
namespace StormEigen { namespace internal { template<int Size> struct increment_if_fixed_size { enum { ret = (Size == Dynamic) ? Dynamic : Size+1 }; }; } }
template<int Deg, typename POLYNOMIAL, typename SOLVER> bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) { typedef typename POLYNOMIAL::Index Index; typedef typename POLYNOMIAL::Scalar Scalar;
typedef typename SOLVER::RootsType RootsType; typedef Matrix<Scalar,Deg,1> EvalRootsType;
const Index deg = pols.size()-1;
// Test template constructor from coefficient vector
SOLVER solve_constr (pols);
psolve.compute( pols ); const RootsType& roots( psolve.roots() ); EvalRootsType evr( deg ); for( int i=0; i<roots.size(); ++i ){ evr[i] = std::abs( poly_eval( pols, roots[i] ) ); }
bool evalToZero = evr.isZero( test_precision<Scalar>() ); if( !evalToZero ) { cerr << "WRONG root: " << endl; cerr << "Polynomial: " << pols.transpose() << endl; cerr << "Roots found: " << roots.transpose() << endl; cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; cerr << endl; }
std::vector<Scalar> rootModuli( roots.size() ); Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); aux = roots.array().abs(); std::sort( rootModuli.begin(), rootModuli.end() ); bool distinctModuli=true; for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i ) { if( internal::isApprox( rootModuli[i], rootModuli[i-1] ) ){ distinctModuli = false; } } VERIFY( evalToZero || !distinctModuli );
return distinctModuli; }
template<int Deg, typename POLYNOMIAL> void evalSolver( const POLYNOMIAL& pols ) { typedef typename POLYNOMIAL::Scalar Scalar;
typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType;
PolynomialSolverType psolve; aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ); }
template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots ) { using std::sqrt; typedef typename POLYNOMIAL::Scalar Scalar;
typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType;
PolynomialSolverType psolve; if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) ) { //It is supposed that
// 1) the roots found are correct
// 2) the roots have distinct moduli
typedef typename POLYNOMIAL::Scalar Scalar; typedef typename REAL_ROOTS::Scalar Real;
//Test realRoots
std::vector< Real > calc_realRoots; psolve.realRoots( calc_realRoots ); VERIFY( calc_realRoots.size() == (size_t)real_roots.size() );
const Scalar psPrec = sqrt( test_precision<Scalar>() );
for( size_t i=0; i<calc_realRoots.size(); ++i ) { bool found = false; for( size_t j=0; j<calc_realRoots.size()&& !found; ++j ) { if( internal::isApprox( calc_realRoots[i], real_roots[j], psPrec ) ){ found = true; } } VERIFY( found ); }
//Test greatestRoot
VERIFY( internal::isApprox( roots.array().abs().maxCoeff(), abs( psolve.greatestRoot() ), psPrec ) );
//Test smallestRoot
VERIFY( internal::isApprox( roots.array().abs().minCoeff(), abs( psolve.smallestRoot() ), psPrec ) );
bool hasRealRoot; //Test absGreatestRealRoot
Real r = psolve.absGreatestRealRoot( hasRealRoot ); VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); if( hasRealRoot ){ VERIFY( internal::isApprox( real_roots.array().abs().maxCoeff(), abs(r), psPrec ) ); }
//Test absSmallestRealRoot
r = psolve.absSmallestRealRoot( hasRealRoot ); VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); if( hasRealRoot ){ VERIFY( internal::isApprox( real_roots.array().abs().minCoeff(), abs( r ), psPrec ) ); }
//Test greatestRealRoot
r = psolve.greatestRealRoot( hasRealRoot ); VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); if( hasRealRoot ){ VERIFY( internal::isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); }
//Test smallestRealRoot
r = psolve.smallestRealRoot( hasRealRoot ); VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); if( hasRealRoot ){ VERIFY( internal::isApprox( real_roots.array().minCoeff(), r, psPrec ) ); } } }
template<typename _Scalar, int _Deg> void polynomialsolver(int deg) { typedef internal::increment_if_fixed_size<_Deg> Dim; typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; typedef Matrix<_Scalar,_Deg,1> EvalRootsType;
cout << "Standard cases" << endl; PolynomialType pols = PolynomialType::Random(deg+1); evalSolver<_Deg,PolynomialType>( pols );
cout << "Hard cases" << endl; _Scalar multipleRoot = internal::random<_Scalar>(); EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot); roots_to_monicPolynomial( allRoots, pols ); evalSolver<_Deg,PolynomialType>( pols );
cout << "Test sugar" << endl; EvalRootsType realRoots = EvalRootsType::Random(deg); roots_to_monicPolynomial( realRoots, pols ); evalSolverSugarFunction<_Deg>( pols, realRoots.template cast < std::complex< typename NumTraits<_Scalar>::Real > >(), realRoots ); }
void test_polynomialsolver() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( (polynomialsolver<float,1>(1)) ); CALL_SUBTEST_2( (polynomialsolver<double,2>(2)) ); CALL_SUBTEST_3( (polynomialsolver<double,3>(3)) ); CALL_SUBTEST_4( (polynomialsolver<float,4>(4)) ); CALL_SUBTEST_5( (polynomialsolver<double,5>(5)) ); CALL_SUBTEST_6( (polynomialsolver<float,6>(6)) ); CALL_SUBTEST_7( (polynomialsolver<float,7>(7)) ); CALL_SUBTEST_8( (polynomialsolver<double,8>(8)) );
CALL_SUBTEST_9( (polynomialsolver<float,Dynamic>( internal::random<int>(9,13) )) ); CALL_SUBTEST_10((polynomialsolver<double,Dynamic>( internal::random<int>(9,13) )) ); CALL_SUBTEST_11((polynomialsolver<float,Dynamic>(1)) ); } }
|