|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "matrix_functions.h"
template<typename T> void test2dRotation(double tol) { Matrix<T,2,2> A, B, C; T angle, c, s;
A << 0, 1, -1, 0; MatrixPower<Matrix<T,2,2> > Apow(A);
for (int i=0; i<=20; ++i) { angle = pow(10, (i-10) / 5.); c = std::cos(angle); s = std::sin(angle); B << c, s, -s, c;
C = Apow(std::ldexp(angle,1) / M_PI); std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, tol)); } }
template<typename T> void test2dHyperbolicRotation(double tol) { Matrix<std::complex<T>,2,2> A, B, C; T angle, ch = std::cosh((T)1); std::complex<T> ish(0, std::sinh((T)1));
A << ch, ish, -ish, ch; MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);
for (int i=0; i<=20; ++i) { angle = std::ldexp(static_cast<T>(i-10), -1); ch = std::cosh(angle); ish = std::complex<T>(0, std::sinh(angle)); B << ch, ish, -ish, ch;
C = Apow(angle); std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, tol)); } }
template<typename T> void test3dRotation(double tol) { Matrix<T,3,1> v; T angle;
for (int i=0; i<=20; ++i) { v = Matrix<T,3,1>::Random(); v.normalize(); angle = pow(10, (i-10) / 5.); VERIFY(AngleAxis<T>(angle, v).matrix().isApprox(AngleAxis<T>(1,v).matrix().pow(angle), tol)); } }
template<typename MatrixType> void testGeneral(const MatrixType& m, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2, m3, m4, m5; RealScalar x, y;
for (int i=0; i < g_repeat; ++i) { generateTestMatrix<MatrixType>::run(m1, m.rows()); MatrixPower<MatrixType> mpow(m1);
x = internal::random<RealScalar>(); y = internal::random<RealScalar>(); m2 = mpow(x); m3 = mpow(y);
m4 = mpow(x+y); m5.noalias() = m2 * m3; VERIFY(m4.isApprox(m5, tol));
m4 = mpow(x*y); m5 = m2.pow(y); VERIFY(m4.isApprox(m5, tol));
m4 = (std::abs(x) * m1).pow(y); m5 = std::pow(std::abs(x), y) * m3; VERIFY(m4.isApprox(m5, tol)); } }
template<typename MatrixType> void testSingular(const MatrixType& m_const, double tol) { // we need to pass by reference in order to prevent errors with
// MSVC for aligned data types ...
MatrixType& m = const_cast<MatrixType&>(m_const);
const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex; typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType; typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur; MatrixType T;
for (int i=0; i < g_repeat; ++i) { m.setRandom(); m.col(0).fill(0);
schur.compute(m); T = schur.matrixT(); const MatrixType& U = schur.matrixU(); processTriangularMatrix<MatrixType>::run(m, T, U); MatrixPower<MatrixType> mpow(m);
T = T.sqrt(); VERIFY(mpow(0.5).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
T = T.sqrt(); VERIFY(mpow(0.25).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
T = T.sqrt(); VERIFY(mpow(0.125).isApprox(U * (TriangularType(T) * U.adjoint()), tol)); } }
template<typename MatrixType> void testLogThenExp(const MatrixType& m_const, double tol) { // we need to pass by reference in order to prevent errors with
// MSVC for aligned data types ...
MatrixType& m = const_cast<MatrixType&>(m_const);
typedef typename MatrixType::Scalar Scalar; Scalar x;
for (int i=0; i < g_repeat; ++i) { generateTestMatrix<MatrixType>::run(m, m.rows()); x = internal::random<Scalar>(); VERIFY(m.pow(x).isApprox((x * m.log()).exp(), tol)); } }
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor; typedef Matrix<long double,3,3> Matrix3e; typedef Matrix<long double,Dynamic,Dynamic> MatrixXe; void test_matrix_power() { CALL_SUBTEST_2(test2dRotation<double>(1e-13)); CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
CALL_SUBTEST_9(test2dRotation<long double>(1e-13)); CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14)); CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5)); CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
CALL_SUBTEST_10(test3dRotation<double>(1e-13)); CALL_SUBTEST_11(test3dRotation<float>(1e-5)); CALL_SUBTEST_12(test3dRotation<long double>(1e-13));
CALL_SUBTEST_2(testGeneral(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testGeneral(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testGeneral(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testGeneral(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testGeneral(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testGeneral(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testGeneral(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testGeneral(MatrixXf(2,2), 1e-3)); // see bug 614
CALL_SUBTEST_9(testGeneral(MatrixXe(7,7), 1e-13)); CALL_SUBTEST_10(testGeneral(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testGeneral(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testGeneral(Matrix3e(), 1e-13));
CALL_SUBTEST_2(testSingular(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testSingular(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testSingular(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testSingular(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testSingular(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testSingular(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testSingular(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testSingular(MatrixXf(2,2), 1e-3)); CALL_SUBTEST_9(testSingular(MatrixXe(7,7), 1e-13)); CALL_SUBTEST_10(testSingular(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testSingular(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testSingular(Matrix3e(), 1e-13));
CALL_SUBTEST_2(testLogThenExp(Matrix2d(), 1e-13)); CALL_SUBTEST_7(testLogThenExp(Matrix3dRowMajor(), 1e-13)); CALL_SUBTEST_3(testLogThenExp(Matrix4cd(), 1e-13)); CALL_SUBTEST_4(testLogThenExp(MatrixXd(8,8), 2e-12)); CALL_SUBTEST_1(testLogThenExp(Matrix2f(), 1e-4)); CALL_SUBTEST_5(testLogThenExp(Matrix3cf(), 1e-4)); CALL_SUBTEST_8(testLogThenExp(Matrix4f(), 1e-4)); CALL_SUBTEST_6(testLogThenExp(MatrixXf(2,2), 1e-3)); CALL_SUBTEST_9(testLogThenExp(MatrixXe(7,7), 1e-13)); CALL_SUBTEST_10(testLogThenExp(Matrix3d(), 1e-13)); CALL_SUBTEST_11(testLogThenExp(Matrix3f(), 1e-4)); CALL_SUBTEST_12(testLogThenExp(Matrix3e(), 1e-13)); }
|