You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

196 lines
4.8 KiB

  1. *> \brief \b DLARFG
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLARFG + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfg.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfg.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfg.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INCX, N
  25. * DOUBLE PRECISION ALPHA, TAU
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION X( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLARFG generates a real elementary reflector H of order n, such
  38. *> that
  39. *>
  40. *> H * ( alpha ) = ( beta ), H**T * H = I.
  41. *> ( x ) ( 0 )
  42. *>
  43. *> where alpha and beta are scalars, and x is an (n-1)-element real
  44. *> vector. H is represented in the form
  45. *>
  46. *> H = I - tau * ( 1 ) * ( 1 v**T ) ,
  47. *> ( v )
  48. *>
  49. *> where tau is a real scalar and v is a real (n-1)-element
  50. *> vector.
  51. *>
  52. *> If the elements of x are all zero, then tau = 0 and H is taken to be
  53. *> the unit matrix.
  54. *>
  55. *> Otherwise 1 <= tau <= 2.
  56. *> \endverbatim
  57. *
  58. * Arguments:
  59. * ==========
  60. *
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the elementary reflector.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] ALPHA
  68. *> \verbatim
  69. *> ALPHA is DOUBLE PRECISION
  70. *> On entry, the value alpha.
  71. *> On exit, it is overwritten with the value beta.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] X
  75. *> \verbatim
  76. *> X is DOUBLE PRECISION array, dimension
  77. *> (1+(N-2)*abs(INCX))
  78. *> On entry, the vector x.
  79. *> On exit, it is overwritten with the vector v.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] INCX
  83. *> \verbatim
  84. *> INCX is INTEGER
  85. *> The increment between elements of X. INCX > 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] TAU
  89. *> \verbatim
  90. *> TAU is DOUBLE PRECISION
  91. *> The value tau.
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \date November 2011
  103. *
  104. *> \ingroup doubleOTHERauxiliary
  105. *
  106. * =====================================================================
  107. SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
  108. *
  109. * -- LAPACK auxiliary routine (version 3.4.0) --
  110. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  111. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  112. * November 2011
  113. *
  114. * .. Scalar Arguments ..
  115. INTEGER INCX, N
  116. DOUBLE PRECISION ALPHA, TAU
  117. * ..
  118. * .. Array Arguments ..
  119. DOUBLE PRECISION X( * )
  120. * ..
  121. *
  122. * =====================================================================
  123. *
  124. * .. Parameters ..
  125. DOUBLE PRECISION ONE, ZERO
  126. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  127. * ..
  128. * .. Local Scalars ..
  129. INTEGER J, KNT
  130. DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM
  131. * ..
  132. * .. External Functions ..
  133. DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
  134. EXTERNAL DLAMCH, DLAPY2, DNRM2
  135. * ..
  136. * .. Intrinsic Functions ..
  137. INTRINSIC ABS, SIGN
  138. * ..
  139. * .. External Subroutines ..
  140. EXTERNAL DSCAL
  141. * ..
  142. * .. Executable Statements ..
  143. *
  144. IF( N.LE.1 ) THEN
  145. TAU = ZERO
  146. RETURN
  147. END IF
  148. *
  149. XNORM = DNRM2( N-1, X, INCX )
  150. *
  151. IF( XNORM.EQ.ZERO ) THEN
  152. *
  153. * H = I
  154. *
  155. TAU = ZERO
  156. ELSE
  157. *
  158. * general case
  159. *
  160. BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
  161. SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
  162. KNT = 0
  163. IF( ABS( BETA ).LT.SAFMIN ) THEN
  164. *
  165. * XNORM, BETA may be inaccurate; scale X and recompute them
  166. *
  167. RSAFMN = ONE / SAFMIN
  168. 10 CONTINUE
  169. KNT = KNT + 1
  170. CALL DSCAL( N-1, RSAFMN, X, INCX )
  171. BETA = BETA*RSAFMN
  172. ALPHA = ALPHA*RSAFMN
  173. IF( ABS( BETA ).LT.SAFMIN )
  174. $ GO TO 10
  175. *
  176. * New BETA is at most 1, at least SAFMIN
  177. *
  178. XNORM = DNRM2( N-1, X, INCX )
  179. BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
  180. END IF
  181. TAU = ( BETA-ALPHA ) / BETA
  182. CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
  183. *
  184. * If ALPHA is subnormal, it may lose relative accuracy
  185. *
  186. DO 20 J = 1, KNT
  187. BETA = BETA*SAFMIN
  188. 20 CONTINUE
  189. ALPHA = BETA
  190. END IF
  191. *
  192. RETURN
  193. *
  194. * End of DLARFG
  195. *
  196. END