You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

328 lines
10 KiB

  1. *> \brief \b CLARFT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLARFT + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIRECT, STOREV
  25. * INTEGER K, LDT, LDV, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CLARFT forms the triangular factor T of a complex block reflector H
  38. *> of order n, which is defined as a product of k elementary reflectors.
  39. *>
  40. *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
  41. *>
  42. *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
  43. *>
  44. *> If STOREV = 'C', the vector which defines the elementary reflector
  45. *> H(i) is stored in the i-th column of the array V, and
  46. *>
  47. *> H = I - V * T * V**H
  48. *>
  49. *> If STOREV = 'R', the vector which defines the elementary reflector
  50. *> H(i) is stored in the i-th row of the array V, and
  51. *>
  52. *> H = I - V**H * T * V
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] DIRECT
  59. *> \verbatim
  60. *> DIRECT is CHARACTER*1
  61. *> Specifies the order in which the elementary reflectors are
  62. *> multiplied to form the block reflector:
  63. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  64. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  65. *> \endverbatim
  66. *>
  67. *> \param[in] STOREV
  68. *> \verbatim
  69. *> STOREV is CHARACTER*1
  70. *> Specifies how the vectors which define the elementary
  71. *> reflectors are stored (see also Further Details):
  72. *> = 'C': columnwise
  73. *> = 'R': rowwise
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The order of the block reflector H. N >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] K
  83. *> \verbatim
  84. *> K is INTEGER
  85. *> The order of the triangular factor T (= the number of
  86. *> elementary reflectors). K >= 1.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] V
  90. *> \verbatim
  91. *> V is COMPLEX array, dimension
  92. *> (LDV,K) if STOREV = 'C'
  93. *> (LDV,N) if STOREV = 'R'
  94. *> The matrix V. See further details.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDV
  98. *> \verbatim
  99. *> LDV is INTEGER
  100. *> The leading dimension of the array V.
  101. *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] TAU
  105. *> \verbatim
  106. *> TAU is COMPLEX array, dimension (K)
  107. *> TAU(i) must contain the scalar factor of the elementary
  108. *> reflector H(i).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] T
  112. *> \verbatim
  113. *> T is COMPLEX array, dimension (LDT,K)
  114. *> The k by k triangular factor T of the block reflector.
  115. *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
  116. *> lower triangular. The rest of the array is not used.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDT
  120. *> \verbatim
  121. *> LDT is INTEGER
  122. *> The leading dimension of the array T. LDT >= K.
  123. *> \endverbatim
  124. *
  125. * Authors:
  126. * ========
  127. *
  128. *> \author Univ. of Tennessee
  129. *> \author Univ. of California Berkeley
  130. *> \author Univ. of Colorado Denver
  131. *> \author NAG Ltd.
  132. *
  133. *> \date April 2012
  134. *
  135. *> \ingroup complexOTHERauxiliary
  136. *
  137. *> \par Further Details:
  138. * =====================
  139. *>
  140. *> \verbatim
  141. *>
  142. *> The shape of the matrix V and the storage of the vectors which define
  143. *> the H(i) is best illustrated by the following example with n = 5 and
  144. *> k = 3. The elements equal to 1 are not stored.
  145. *>
  146. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  147. *>
  148. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  149. *> ( v1 1 ) ( 1 v2 v2 v2 )
  150. *> ( v1 v2 1 ) ( 1 v3 v3 )
  151. *> ( v1 v2 v3 )
  152. *> ( v1 v2 v3 )
  153. *>
  154. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  155. *>
  156. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  157. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  158. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  159. *> ( 1 v3 )
  160. *> ( 1 )
  161. *> \endverbatim
  162. *>
  163. * =====================================================================
  164. SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  165. *
  166. * -- LAPACK auxiliary routine (version 3.4.1) --
  167. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  168. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  169. * April 2012
  170. *
  171. * .. Scalar Arguments ..
  172. CHARACTER DIRECT, STOREV
  173. INTEGER K, LDT, LDV, N
  174. * ..
  175. * .. Array Arguments ..
  176. COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
  177. * ..
  178. *
  179. * =====================================================================
  180. *
  181. * .. Parameters ..
  182. COMPLEX ONE, ZERO
  183. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
  184. $ ZERO = ( 0.0E+0, 0.0E+0 ) )
  185. * ..
  186. * .. Local Scalars ..
  187. INTEGER I, J, PREVLASTV, LASTV
  188. * ..
  189. * .. External Subroutines ..
  190. EXTERNAL CGEMV, CLACGV, CTRMV
  191. * ..
  192. * .. External Functions ..
  193. LOGICAL LSAME
  194. EXTERNAL LSAME
  195. * ..
  196. * .. Executable Statements ..
  197. *
  198. * Quick return if possible
  199. *
  200. IF( N.EQ.0 )
  201. $ RETURN
  202. *
  203. IF( LSAME( DIRECT, 'F' ) ) THEN
  204. PREVLASTV = N
  205. DO I = 1, K
  206. PREVLASTV = MAX( PREVLASTV, I )
  207. IF( TAU( I ).EQ.ZERO ) THEN
  208. *
  209. * H(i) = I
  210. *
  211. DO J = 1, I
  212. T( J, I ) = ZERO
  213. END DO
  214. ELSE
  215. *
  216. * general case
  217. *
  218. IF( LSAME( STOREV, 'C' ) ) THEN
  219. * Skip any trailing zeros.
  220. DO LASTV = N, I+1, -1
  221. IF( V( LASTV, I ).NE.ZERO ) EXIT
  222. END DO
  223. DO J = 1, I-1
  224. T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
  225. END DO
  226. J = MIN( LASTV, PREVLASTV )
  227. *
  228. * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
  229. *
  230. CALL CGEMV( 'Conjugate transpose', J-I, I-1,
  231. $ -TAU( I ), V( I+1, 1 ), LDV,
  232. $ V( I+1, I ), 1,
  233. $ ONE, T( 1, I ), 1 )
  234. ELSE
  235. * Skip any trailing zeros.
  236. DO LASTV = N, I+1, -1
  237. IF( V( I, LASTV ).NE.ZERO ) EXIT
  238. END DO
  239. DO J = 1, I-1
  240. T( J, I ) = -TAU( I ) * V( J , I )
  241. END DO
  242. J = MIN( LASTV, PREVLASTV )
  243. *
  244. * T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
  245. *
  246. CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
  247. $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
  248. $ ONE, T( 1, I ), LDT )
  249. END IF
  250. *
  251. * T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
  252. *
  253. CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
  254. $ LDT, T( 1, I ), 1 )
  255. T( I, I ) = TAU( I )
  256. IF( I.GT.1 ) THEN
  257. PREVLASTV = MAX( PREVLASTV, LASTV )
  258. ELSE
  259. PREVLASTV = LASTV
  260. END IF
  261. END IF
  262. END DO
  263. ELSE
  264. PREVLASTV = 1
  265. DO I = K, 1, -1
  266. IF( TAU( I ).EQ.ZERO ) THEN
  267. *
  268. * H(i) = I
  269. *
  270. DO J = I, K
  271. T( J, I ) = ZERO
  272. END DO
  273. ELSE
  274. *
  275. * general case
  276. *
  277. IF( I.LT.K ) THEN
  278. IF( LSAME( STOREV, 'C' ) ) THEN
  279. * Skip any leading zeros.
  280. DO LASTV = 1, I-1
  281. IF( V( LASTV, I ).NE.ZERO ) EXIT
  282. END DO
  283. DO J = I+1, K
  284. T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
  285. END DO
  286. J = MAX( LASTV, PREVLASTV )
  287. *
  288. * T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
  289. *
  290. CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I,
  291. $ -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
  292. $ 1, ONE, T( I+1, I ), 1 )
  293. ELSE
  294. * Skip any leading zeros.
  295. DO LASTV = 1, I-1
  296. IF( V( I, LASTV ).NE.ZERO ) EXIT
  297. END DO
  298. DO J = I+1, K
  299. T( J, I ) = -TAU( I ) * V( J, N-K+I )
  300. END DO
  301. J = MAX( LASTV, PREVLASTV )
  302. *
  303. * T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
  304. *
  305. CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
  306. $ V( I+1, J ), LDV, V( I, J ), LDV,
  307. $ ONE, T( I+1, I ), LDT )
  308. END IF
  309. *
  310. * T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
  311. *
  312. CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
  313. $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
  314. IF( I.GT.1 ) THEN
  315. PREVLASTV = MIN( PREVLASTV, LASTV )
  316. ELSE
  317. PREVLASTV = LASTV
  318. END IF
  319. END IF
  320. T( I, I ) = TAU( I )
  321. END IF
  322. END DO
  323. END IF
  324. RETURN
  325. *
  326. * End of CLARFT
  327. *
  328. END