You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

169 lines
7.4 KiB

  1. /*
  2. Copyright (c) 2011, Intel Corporation. All rights reserved.
  3. Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
  4. Redistribution and use in source and binary forms, with or without modification,
  5. are permitted provided that the following conditions are met:
  6. * Redistributions of source code must retain the above copyright notice, this
  7. list of conditions and the following disclaimer.
  8. * Redistributions in binary form must reproduce the above copyright notice,
  9. this list of conditions and the following disclaimer in the documentation
  10. and/or other materials provided with the distribution.
  11. * Neither the name of Intel Corporation nor the names of its contributors may
  12. be used to endorse or promote products derived from this software without
  13. specific prior written permission.
  14. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  15. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  16. WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  17. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
  18. ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  19. (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  20. LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  21. ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  22. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  23. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. ********************************************************************************
  25. * Content : Documentation on the use of Intel MKL through Eigen
  26. ********************************************************************************
  27. */
  28. namespace StormEigen {
  29. /** \page TopicUsingIntelMKL Using Intel® Math Kernel Library from Eigen
  30. \section TopicUsingIntelMKL_Intro Eigen and Intel® Math Kernel Library (Intel® MKL)
  31. Since Eigen version 3.1 and later, users can benefit from built-in Intel MKL optimizations with an installed copy of Intel MKL 10.3 (or later).
  32. <a href="http://eigen.tuxfamily.org/Counter/redirect_to_mkl.php"> Intel MKL </a> provides highly optimized multi-threaded mathematical routines for x86-compatible architectures.
  33. Intel MKL is available on Linux, Mac and Windows for both Intel64 and IA32 architectures.
  34. \note
  35. Intel® MKL is a proprietary software and it is the responsibility of users to buy or register for community (free) Intel MKL licenses for their products. Moreover, the license of the user product has to allow linking to proprietary software that excludes any unmodified versions of the GPL.
  36. Using Intel MKL through Eigen is easy:
  37. -# define the \c EIGEN_USE_MKL_ALL macro before including any Eigen's header
  38. -# link your program to MKL libraries (see the <a href="http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/">MKL linking advisor</a>)
  39. -# on a 64bits system, you must use the LP64 interface (not the ILP64 one)
  40. When doing so, a number of Eigen's algorithms are silently substituted with calls to Intel MKL routines.
  41. These substitutions apply only for \b Dynamic \b or \b large enough objects with one of the following four standard scalar types: \c float, \c double, \c complex<float>, and \c complex<double>.
  42. Operations on other scalar types or mixing reals and complexes will continue to use the built-in algorithms.
  43. In addition you can coarsely select choose which parts will be substituted by defining one or multiple of the following macros:
  44. <table class="manual">
  45. <tr><td>\c EIGEN_USE_BLAS </td><td>Enables the use of external BLAS level 2 and 3 routines (currently works with Intel MKL only)</td></tr>
  46. <tr class="alt"><td>\c EIGEN_USE_LAPACKE </td><td>Enables the use of external Lapack routines via the <a href="http://www.netlib.org/lapack/lapacke.html">Intel Lapacke</a> C interface to Lapack (currently works with Intel MKL only)</td></tr>
  47. <tr><td>\c EIGEN_USE_LAPACKE_STRICT </td><td>Same as \c EIGEN_USE_LAPACKE but algorithm of lower robustness are disabled. This currently concerns only JacobiSVD which otherwise would be replaced by \c gesvd that is less robust than Jacobi rotations.</td></tr>
  48. <tr class="alt"><td>\c EIGEN_USE_MKL_VML </td><td>Enables the use of Intel VML (vector operations)</td></tr>
  49. <tr><td>\c EIGEN_USE_MKL_ALL </td><td>Defines \c EIGEN_USE_BLAS, \c EIGEN_USE_LAPACKE, and \c EIGEN_USE_MKL_VML </td></tr>
  50. </table>
  51. Finally, the PARDISO sparse solver shipped with Intel MKL can be used through the \ref PardisoLU, \ref PardisoLLT and \ref PardisoLDLT classes of the \ref PardisoSupport_Module.
  52. \section TopicUsingIntelMKL_SupportedFeatures List of supported features
  53. The breadth of Eigen functionality covered by Intel MKL is listed in the table below.
  54. <table class="manual">
  55. <tr><th>Functional domain</th><th>Code example</th><th>MKL routines</th></tr>
  56. <tr><td>Matrix-matrix operations \n \c EIGEN_USE_BLAS </td><td>\code
  57. m1*m2.transpose();
  58. m1.selfadjointView<Lower>()*m2;
  59. m1*m2.triangularView<Upper>();
  60. m1.selfadjointView<Lower>().rankUpdate(m2,1.0);
  61. \endcode</td><td>\code
  62. ?gemm
  63. ?symm/?hemm
  64. ?trmm
  65. dsyrk/ssyrk
  66. \endcode</td></tr>
  67. <tr class="alt"><td>Matrix-vector operations \n \c EIGEN_USE_BLAS </td><td>\code
  68. m1.adjoint()*b;
  69. m1.selfadjointView<Lower>()*b;
  70. m1.triangularView<Upper>()*b;
  71. \endcode</td><td>\code
  72. ?gemv
  73. ?symv/?hemv
  74. ?trmv
  75. \endcode</td></tr>
  76. <tr><td>LU decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
  77. v1 = m1.lu().solve(v2);
  78. \endcode</td><td>\code
  79. ?getrf
  80. \endcode</td></tr>
  81. <tr class="alt"><td>Cholesky decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
  82. v1 = m2.selfadjointView<Upper>().llt().solve(v2);
  83. \endcode</td><td>\code
  84. ?potrf
  85. \endcode</td></tr>
  86. <tr><td>QR decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
  87. m1.householderQr();
  88. m1.colPivHouseholderQr();
  89. \endcode</td><td>\code
  90. ?geqrf
  91. ?geqp3
  92. \endcode</td></tr>
  93. <tr class="alt"><td>Singular value decomposition \n \c EIGEN_USE_LAPACKE </td><td>\code
  94. JacobiSVD<MatrixXd> svd;
  95. svd.compute(m1, ComputeThinV);
  96. \endcode</td><td>\code
  97. ?gesvd
  98. \endcode</td></tr>
  99. <tr><td>Eigen-value decompositions \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
  100. EigenSolver<MatrixXd> es(m1);
  101. ComplexEigenSolver<MatrixXcd> ces(m1);
  102. SelfAdjointEigenSolver<MatrixXd> saes(m1+m1.transpose());
  103. GeneralizedSelfAdjointEigenSolver<MatrixXd>
  104. gsaes(m1+m1.transpose(),m2+m2.transpose());
  105. \endcode</td><td>\code
  106. ?gees
  107. ?gees
  108. ?syev/?heev
  109. ?syev/?heev,
  110. ?potrf
  111. \endcode</td></tr>
  112. <tr class="alt"><td>Schur decomposition \n \c EIGEN_USE_LAPACKE \n \c EIGEN_USE_LAPACKE_STRICT </td><td>\code
  113. RealSchur<MatrixXd> schurR(m1);
  114. ComplexSchur<MatrixXcd> schurC(m1);
  115. \endcode</td><td>\code
  116. ?gees
  117. \endcode</td></tr>
  118. <tr><td>Vector Math \n \c EIGEN_USE_MKL_VML </td><td>\code
  119. v2=v1.array().sin();
  120. v2=v1.array().asin();
  121. v2=v1.array().cos();
  122. v2=v1.array().acos();
  123. v2=v1.array().tan();
  124. v2=v1.array().exp();
  125. v2=v1.array().log();
  126. v2=v1.array().sqrt();
  127. v2=v1.array().square();
  128. v2=v1.array().pow(1.5);
  129. \endcode</td><td>\code
  130. v?Sin
  131. v?Asin
  132. v?Cos
  133. v?Acos
  134. v?Tan
  135. v?Exp
  136. v?Ln
  137. v?Sqrt
  138. v?Sqr
  139. v?Powx
  140. \endcode</td></tr>
  141. </table>
  142. In the examples, m1 and m2 are dense matrices and v1 and v2 are dense vectors.
  143. \section TopicUsingIntelMKL_Links Links
  144. - Intel MKL can be purchased and downloaded <a href="http://eigen.tuxfamily.org/Counter/redirect_to_mkl.php">here</a>.
  145. - Intel MKL is also bundled with <a href="http://software.intel.com/en-us/articles/intel-composer-xe/">Intel Composer XE</a>.
  146. */
  147. }