|
|
//g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1
#define SCALAR double
#include <iostream>
#include <algorithm>
#include "BenchTimer.h"
#include "BenchSparseUtil.h"
#define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE);
// #ifdef MKL
//
// #include "mkl_types.h"
// #include "mkl_spblas.h"
//
// template<typename Lhs,typename Rhs,typename Res>
// void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
// {
// char n = 'N';
// float alpha = 1;
// char matdescra[6];
// matdescra[0] = 'G';
// matdescra[1] = 0;
// matdescra[2] = 0;
// matdescra[3] = 'C';
// mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
// lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
// pntre, b, &ldb, &beta, c, &ldc);
// // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
// // lhs._valuePtr(), lhs.rows(), DST, dst_stride);
// }
//
// #endif
int main(int argc, char *argv[]) { int size = 10000; int rows = size; int cols = size; int nnzPerCol = 40; int tries = 2; int repeats = 2;
bool need_help = false; for(int i = 1; i < argc; i++) { if(argv[i][0] == 'r') { rows = atoi(argv[i]+1); } else if(argv[i][0] == 'c') { cols = atoi(argv[i]+1); } else if(argv[i][0] == 'n') { nnzPerCol = atoi(argv[i]+1); } else if(argv[i][0] == 't') { tries = atoi(argv[i]+1); } else if(argv[i][0] == 'p') { repeats = atoi(argv[i]+1); } else { need_help = true; } } if(need_help) { std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; return 1; }
std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n";
EigenSparseMatrix sm(rows,cols); DenseVector dv(cols), res(rows); dv.setRandom();
BenchTimer t; while (nnzPerCol>=4) { std::cout << "nnz: " << nnzPerCol << "\n"; sm.setZero(); fillMatrix2(nnzPerCol, rows, cols, sm);
// dense matrices
#ifdef DENSEMATRIX
{ DenseMatrix dm(rows,cols), (rows,cols); eiToDense(sm, dm);
SPMV_BENCH(res = dm * sm); std::cout << "Dense " << t.value()/repeats << "\t";
SPMV_BENCH(res = dm.transpose() * sm); std::cout << t.value()/repeats << endl; } #endif
// eigen sparse matrices
{ SPMV_BENCH(res.noalias() += sm * dv; ) std::cout << "Eigen " << t.value()/repeats << "\t";
SPMV_BENCH(res.noalias() += sm.transpose() * dv; ) std::cout << t.value()/repeats << endl; }
// CSparse
#ifdef CSPARSE
{ std::cout << "CSparse \n"; cs *csm; eiToCSparse(sm, csm);
// BENCH();
// timer.stop();
// std::cout << " a * b:\t" << timer.value() << endl;
// BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
// std::cout << " a * b:\t" << timer.value() << endl;
} #endif
#ifdef OSKI
{ oski_matrix_t om; oski_vecview_t ov, ores; oski_Init(); om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols, SHARE_INPUTMAT, 1, INDEX_ZERO_BASED); ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT); ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); std::cout << "OSKI " << t.value()/repeats << "\t";
SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); std::cout << t.value()/repeats << "\n";
// tune
t.reset(); t.start(); oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY); oski_TuneMat(om); t.stop(); double tuning = t.value();
SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); std::cout << "OSKI tuned " << t.value()/repeats << "\t";
SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); std::cout << t.value()/repeats << "\t(" << tuning << ")\n";
oski_DestroyMat(om); oski_DestroyVecView(ov); oski_DestroyVecView(ores); oski_Close(); } #endif
#ifndef NOUBLAS
{ using namespace boost::numeric; UblasMatrix um(rows,cols); eiToUblas(sm, um);
boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows); Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv; Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res;
SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true)); std::cout << "ublas " << t.value()/repeats << "\t";
SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true)); std::cout << t.value()/repeats << endl; } #endif
// GMM++
#ifndef NOGMM
{ GmmSparse gm(rows,cols); eiToGmm(sm, gm);
std::vector<Scalar> gv(cols), gres(rows); Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv; Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res;
SPMV_BENCH(gmm::mult(gm, gv, gres)); std::cout << "GMM++ " << t.value()/repeats << "\t";
SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres)); std::cout << t.value()/repeats << endl; } #endif
// MTL4
#ifndef NOMTL
{ MtlSparse mm(rows,cols); eiToMtl(sm, mm); mtl::dense_vector<Scalar> mv(cols, 1.0); mtl::dense_vector<Scalar> mres(rows, 1.0);
SPMV_BENCH(mres = mm * mv); std::cout << "MTL4 " << t.value()/repeats << "\t";
SPMV_BENCH(mres = trans(mm) * mv); std::cout << t.value()/repeats << endl; } #endif
std::cout << "\n";
if(nnzPerCol==1) break; nnzPerCol -= nnzPerCol/2; }
return 0; }
|