|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
// -DNOGMM -DNOMTL -DCSPARSE
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
#ifndef SIZE
#define SIZE 650000
#endif
#ifndef DENSITY
#define DENSITY 0.01
#endif
#ifndef REPEAT
#define REPEAT 1
#endif
#include "BenchSparseUtil.h"
#ifndef MINDENSITY
#define MINDENSITY 0.0004
#endif
#ifndef NBTRIES
#define NBTRIES 10
#endif
#define BENCH(X) \
timer.reset(); \ for (int _j=0; _j<NBTRIES; ++_j) { \ timer.start(); \ for (int _k=0; _k<REPEAT; ++_k) { \ X \ } timer.stop(); }
#ifdef CSPARSE
cs* cs_sorted_multiply(const cs* a, const cs* b) { cs* A = cs_transpose (a, 1) ; cs* B = cs_transpose (b, 1) ; cs* D = cs_multiply (B,A) ; /* D = B'*A' */ cs_spfree (A) ; cs_spfree (B) ; cs_dropzeros (D) ; /* drop zeros from D */ cs* C = cs_transpose (D, 1) ; /* C = D', so that C is sorted */ cs_spfree (D) ; return C; } #endif
int main(int argc, char *argv[]) { int rows = SIZE; int cols = SIZE; float density = DENSITY;
EigenSparseMatrix sm1(rows,cols); DenseVector v1(cols), v2(cols); v1.setRandom();
BenchTimer timer; for (float density = DENSITY; density>=MINDENSITY; density*=0.5) { //fillMatrix(density, rows, cols, sm1);
fillMatrix2(7, rows, cols, sm1);
// dense matrices
#ifdef DENSEMATRIX
{ std::cout << "Eigen Dense\t" << density*100 << "%\n"; DenseMatrix m1(rows,cols); eiToDense(sm1, m1);
timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) v2 = m1 * v1; timer.stop(); std::cout << " a * v:\t" << timer.best() << " " << double(REPEAT)/timer.best() << " * / sec " << endl;
timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1; timer.stop(); std::cout << " a' * v:\t" << timer.best() << endl; } #endif
// eigen sparse matrices
{ std::cout << "Eigen sparse\t" << sm1.nonZeros()/float(sm1.rows()*sm1.cols())*100 << "%\n";
BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");) std::cout << " a * v:\t" << timer.best()/REPEAT << " " << double(REPEAT)/timer.best(REAL_TIMER) << " * / sec " << endl;
BENCH( { asm("#mya"); v2 = sm1.transpose() * v1; asm("#myb"); })
std::cout << " a' * v:\t" << timer.best()/REPEAT << endl; }
// {
// DynamicSparseMatrix<Scalar> m1(sm1);
// std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n";
//
// BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1 * v1;)
// std::cout << " a * v:\t" << timer.value() << endl;
//
// BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1;)
// std::cout << " a' * v:\t" << timer.value() << endl;
// }
// GMM++
#ifndef NOGMM
{ std::cout << "GMM++ sparse\t" << density*100 << "%\n"; //GmmDynSparse gmmT3(rows,cols);
GmmSparse m1(rows,cols); eiToGmm(sm1, m1);
std::vector<Scalar> gmmV1(cols), gmmV2(cols); Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1; Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2;
BENCH( asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy"); ) std::cout << " a * v:\t" << timer.value() << endl;
BENCH( gmm::mult(gmm::transposed(m1), gmmV1, gmmV2); ) std::cout << " a' * v:\t" << timer.value() << endl; } #endif
#ifndef NOUBLAS
{ std::cout << "ublas sparse\t" << density*100 << "%\n"; UBlasSparse m1(rows,cols); eiToUblas(sm1, m1); boost::numeric::ublas::vector<Scalar> uv1, uv2; eiToUblasVec(v1,uv1); eiToUblasVec(v2,uv2);
// std::vector<Scalar> gmmV1(cols), gmmV2(cols);
// Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1;
// Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2;
BENCH( uv2 = boost::numeric::ublas::prod(m1, uv1); ) std::cout << " a * v:\t" << timer.value() << endl;
// BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); )
// std::cout << " a' * v:\t" << timer.value() << endl;
} #endif
// MTL4
#ifndef NOMTL
{ std::cout << "MTL4\t" << density*100 << "%\n"; MtlSparse m1(rows,cols); eiToMtl(sm1, m1); mtl::dense_vector<Scalar> mtlV1(cols, 1.0); mtl::dense_vector<Scalar> mtlV2(cols, 1.0);
timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) mtlV2 = m1 * mtlV1; timer.stop(); std::cout << " a * v:\t" << timer.value() << endl;
timer.reset(); timer.start(); for (int k=0; k<REPEAT; ++k) mtlV2 = trans(m1) * mtlV1; timer.stop(); std::cout << " a' * v:\t" << timer.value() << endl; } #endif
std::cout << "\n\n"; }
return 0; }
|