You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1067 lines
31 KiB

  1. /*
  2. * FILE: sha2.c
  3. * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
  4. *
  5. * Copyright (c) 2000-2001, Aaron D. Gifford
  6. * All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided with the distribution.
  16. * 3. Neither the name of the copyright holder nor the names of contributors
  17. * may be used to endorse or promote products derived from this software
  18. * without specific prior written permission.
  19. *
  20. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
  21. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  23. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
  24. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  26. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  27. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  28. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  29. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  30. * SUCH DAMAGE.
  31. *
  32. */
  33. #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
  34. #include <assert.h> /* assert() */
  35. #include "sha2.h"
  36. /*
  37. * ASSERT NOTE:
  38. * Some sanity checking code is included using assert(). On my FreeBSD
  39. * system, this additional code can be removed by compiling with NDEBUG
  40. * defined. Check your own systems manpage on assert() to see how to
  41. * compile WITHOUT the sanity checking code on your system.
  42. *
  43. * UNROLLED TRANSFORM LOOP NOTE:
  44. * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
  45. * loop version for the hash transform rounds (defined using macros
  46. * later in this file). Either define on the command line, for example:
  47. *
  48. * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
  49. *
  50. * or define below:
  51. *
  52. * #define SHA2_UNROLL_TRANSFORM
  53. *
  54. */
  55. /*** SHA-256/384/512 Machine Architecture Definitions *****************/
  56. /*
  57. * BYTE_ORDER NOTE:
  58. *
  59. * Please make sure that your system defines BYTE_ORDER. If your
  60. * architecture is little-endian, make sure it also defines
  61. * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
  62. * equivilent.
  63. *
  64. * If your system does not define the above, then you can do so by
  65. * hand like this:
  66. *
  67. * #define LITTLE_ENDIAN 1234
  68. * #define BIG_ENDIAN 4321
  69. *
  70. * And for little-endian machines, add:
  71. *
  72. * #define BYTE_ORDER LITTLE_ENDIAN
  73. *
  74. * Or for big-endian machines:
  75. *
  76. * #define BYTE_ORDER BIG_ENDIAN
  77. *
  78. * The FreeBSD machine this was written on defines BYTE_ORDER
  79. * appropriately by including <sys/types.h> (which in turn includes
  80. * <machine/endian.h> where the appropriate definitions are actually
  81. * made).
  82. */
  83. #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  84. #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  85. #endif
  86. /*
  87. * Define the followingsha2_* types to types of the correct length on
  88. * the native archtecture. Most BSD systems and Linux define u_intXX_t
  89. * types. Machines with very recent ANSI C headers, can use the
  90. * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  91. * during compile or in the sha.h header file.
  92. *
  93. * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  94. * will need to define these three typedefs below (and the appropriate
  95. * ones in sha.h too) by hand according to their system architecture.
  96. *
  97. * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  98. * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  99. */
  100. #ifdef SHA2_USE_INTTYPES_H
  101. typedef uint8_t sha2_byte; /* Exactly 1 byte */
  102. typedef uint32_t sha2_word32; /* Exactly 4 bytes */
  103. typedef uint64_t sha2_word64; /* Exactly 8 bytes */
  104. #else /* SHA2_USE_INTTYPES_H */
  105. typedef u_int8_t sha2_byte; /* Exactly 1 byte */
  106. typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
  107. typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
  108. #endif /* SHA2_USE_INTTYPES_H */
  109. /*** SHA-256/384/512 Various Length Definitions ***********************/
  110. /* NOTE: Most of these are in sha2.h */
  111. #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
  112. #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
  113. #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  114. /*** ENDIAN REVERSAL MACROS *******************************************/
  115. #if BYTE_ORDER == LITTLE_ENDIAN
  116. #define REVERSE32(w,x) { \
  117. sha2_word32 tmp = (w); \
  118. tmp = (tmp >> 16) | (tmp << 16); \
  119. (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  120. }
  121. #define REVERSE64(w,x) { \
  122. sha2_word64 tmp = (w); \
  123. tmp = (tmp >> 32) | (tmp << 32); \
  124. tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  125. ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  126. (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  127. ((tmp & 0x0000ffff0000ffffULL) << 16); \
  128. }
  129. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  130. /*
  131. * Macro for incrementally adding the unsigned 64-bit integer n to the
  132. * unsigned 128-bit integer (represented using a two-element array of
  133. * 64-bit words):
  134. */
  135. #define ADDINC128(w,n) { \
  136. (w)[0] += (sha2_word64)(n); \
  137. if ((w)[0] < (n)) { \
  138. (w)[1]++; \
  139. } \
  140. }
  141. /*
  142. * Macros for copying blocks of memory and for zeroing out ranges
  143. * of memory. Using these macros makes it easy to switch from
  144. * using memset()/memcpy() and using bzero()/bcopy().
  145. *
  146. * Please define either SHA2_USE_MEMSET_MEMCPY or define
  147. * SHA2_USE_BZERO_BCOPY depending on which function set you
  148. * choose to use:
  149. */
  150. #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
  151. /* Default to memset()/memcpy() if no option is specified */
  152. #define SHA2_USE_MEMSET_MEMCPY 1
  153. #endif
  154. #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
  155. /* Abort with an error if BOTH options are defined */
  156. #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
  157. #endif
  158. #ifdef SHA2_USE_MEMSET_MEMCPY
  159. #define MEMSET_BZERO(p,l) memset((p), 0, (l))
  160. #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
  161. #endif
  162. #ifdef SHA2_USE_BZERO_BCOPY
  163. #define MEMSET_BZERO(p,l) bzero((p), (l))
  164. #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
  165. #endif
  166. /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  167. /*
  168. * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  169. *
  170. * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
  171. * S is a ROTATION) because the SHA-256/384/512 description document
  172. * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  173. * same "backwards" definition.
  174. */
  175. /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  176. #define R(b,x) ((x) >> (b))
  177. /* 32-bit Rotate-right (used in SHA-256): */
  178. #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
  179. /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  180. #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
  181. /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  182. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  183. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  184. /* Four of six logical functions used in SHA-256: */
  185. #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  186. #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  187. #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
  188. #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
  189. /* Four of six logical functions used in SHA-384 and SHA-512: */
  190. #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  191. #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  192. #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
  193. #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
  194. /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  195. /* NOTE: These should not be accessed directly from outside this
  196. * library -- they are intended for private internal visibility/use
  197. * only.
  198. */
  199. void SHA512_Last(SHA512_CTX*);
  200. void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  201. void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  202. /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  203. /* Hash constant words K for SHA-256: */
  204. static const sha2_word32 K256[64] = {
  205. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  206. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  207. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  208. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  209. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  210. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  211. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  212. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  213. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  214. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  215. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  216. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  217. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  218. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  219. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  220. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  221. };
  222. /* Initial hash value H for SHA-256: */
  223. static const sha2_word32 sha256_initial_hash_value[8] = {
  224. 0x6a09e667UL,
  225. 0xbb67ae85UL,
  226. 0x3c6ef372UL,
  227. 0xa54ff53aUL,
  228. 0x510e527fUL,
  229. 0x9b05688cUL,
  230. 0x1f83d9abUL,
  231. 0x5be0cd19UL
  232. };
  233. /* Hash constant words K for SHA-384 and SHA-512: */
  234. static const sha2_word64 K512[80] = {
  235. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  236. 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  237. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  238. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  239. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  240. 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  241. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  242. 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  243. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  244. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  245. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  246. 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  247. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  248. 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  249. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  250. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  251. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  252. 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  253. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  254. 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  255. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  256. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  257. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  258. 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  259. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  260. 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  261. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  262. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  263. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  264. 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  265. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  266. 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  267. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  268. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  269. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  270. 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  271. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  272. 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  273. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  274. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  275. };
  276. /* Initial hash value H for SHA-384 */
  277. static const sha2_word64 sha384_initial_hash_value[8] = {
  278. 0xcbbb9d5dc1059ed8ULL,
  279. 0x629a292a367cd507ULL,
  280. 0x9159015a3070dd17ULL,
  281. 0x152fecd8f70e5939ULL,
  282. 0x67332667ffc00b31ULL,
  283. 0x8eb44a8768581511ULL,
  284. 0xdb0c2e0d64f98fa7ULL,
  285. 0x47b5481dbefa4fa4ULL
  286. };
  287. /* Initial hash value H for SHA-512 */
  288. static const sha2_word64 sha512_initial_hash_value[8] = {
  289. 0x6a09e667f3bcc908ULL,
  290. 0xbb67ae8584caa73bULL,
  291. 0x3c6ef372fe94f82bULL,
  292. 0xa54ff53a5f1d36f1ULL,
  293. 0x510e527fade682d1ULL,
  294. 0x9b05688c2b3e6c1fULL,
  295. 0x1f83d9abfb41bd6bULL,
  296. 0x5be0cd19137e2179ULL
  297. };
  298. /*
  299. * Constant used by SHA256/384/512_End() functions for converting the
  300. * digest to a readable hexadecimal character string:
  301. */
  302. static const char *sha2_hex_digits = "0123456789abcdef";
  303. /*** SHA-256: *********************************************************/
  304. void SHA256_Init(SHA256_CTX* context) {
  305. if (context == (SHA256_CTX*)0) {
  306. return;
  307. }
  308. MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  309. MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
  310. context->bitcount = 0;
  311. }
  312. #ifdef SHA2_UNROLL_TRANSFORM
  313. /* Unrolled SHA-256 round macros: */
  314. #if BYTE_ORDER == LITTLE_ENDIAN
  315. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  316. REVERSE32(*data++, W256[j]); \
  317. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  318. K256[j] + W256[j]; \
  319. (d) += T1; \
  320. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  321. j++
  322. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  323. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  324. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  325. K256[j] + (W256[j] = *data++); \
  326. (d) += T1; \
  327. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  328. j++
  329. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  330. #define ROUND256(a,b,c,d,e,f,g,h) \
  331. s0 = W256[(j+1)&0x0f]; \
  332. s0 = sigma0_256(s0); \
  333. s1 = W256[(j+14)&0x0f]; \
  334. s1 = sigma1_256(s1); \
  335. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  336. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  337. (d) += T1; \
  338. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  339. j++
  340. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  341. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  342. sha2_word32 T1, *W256;
  343. int j;
  344. W256 = (sha2_word32*)context->buffer;
  345. /* Initialize registers with the prev. intermediate value */
  346. a = context->state[0];
  347. b = context->state[1];
  348. c = context->state[2];
  349. d = context->state[3];
  350. e = context->state[4];
  351. f = context->state[5];
  352. g = context->state[6];
  353. h = context->state[7];
  354. j = 0;
  355. do {
  356. /* Rounds 0 to 15 (unrolled): */
  357. ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  358. ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  359. ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  360. ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  361. ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  362. ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  363. ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  364. ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  365. } while (j < 16);
  366. /* Now for the remaining rounds to 64: */
  367. do {
  368. ROUND256(a,b,c,d,e,f,g,h);
  369. ROUND256(h,a,b,c,d,e,f,g);
  370. ROUND256(g,h,a,b,c,d,e,f);
  371. ROUND256(f,g,h,a,b,c,d,e);
  372. ROUND256(e,f,g,h,a,b,c,d);
  373. ROUND256(d,e,f,g,h,a,b,c);
  374. ROUND256(c,d,e,f,g,h,a,b);
  375. ROUND256(b,c,d,e,f,g,h,a);
  376. } while (j < 64);
  377. /* Compute the current intermediate hash value */
  378. context->state[0] += a;
  379. context->state[1] += b;
  380. context->state[2] += c;
  381. context->state[3] += d;
  382. context->state[4] += e;
  383. context->state[5] += f;
  384. context->state[6] += g;
  385. context->state[7] += h;
  386. /* Clean up */
  387. a = b = c = d = e = f = g = h = T1 = 0;
  388. }
  389. #else /* SHA2_UNROLL_TRANSFORM */
  390. void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  391. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  392. sha2_word32 T1, T2, *W256;
  393. int j;
  394. W256 = (sha2_word32*)context->buffer;
  395. /* Initialize registers with the prev. intermediate value */
  396. a = context->state[0];
  397. b = context->state[1];
  398. c = context->state[2];
  399. d = context->state[3];
  400. e = context->state[4];
  401. f = context->state[5];
  402. g = context->state[6];
  403. h = context->state[7];
  404. j = 0;
  405. do {
  406. #if BYTE_ORDER == LITTLE_ENDIAN
  407. /* Copy data while converting to host byte order */
  408. REVERSE32(*data++,W256[j]);
  409. /* Apply the SHA-256 compression function to update a..h */
  410. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  411. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  412. /* Apply the SHA-256 compression function to update a..h with copy */
  413. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  414. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  415. T2 = Sigma0_256(a) + Maj(a, b, c);
  416. h = g;
  417. g = f;
  418. f = e;
  419. e = d + T1;
  420. d = c;
  421. c = b;
  422. b = a;
  423. a = T1 + T2;
  424. j++;
  425. } while (j < 16);
  426. do {
  427. /* Part of the message block expansion: */
  428. s0 = W256[(j+1)&0x0f];
  429. s0 = sigma0_256(s0);
  430. s1 = W256[(j+14)&0x0f];
  431. s1 = sigma1_256(s1);
  432. /* Apply the SHA-256 compression function to update a..h */
  433. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
  434. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  435. T2 = Sigma0_256(a) + Maj(a, b, c);
  436. h = g;
  437. g = f;
  438. f = e;
  439. e = d + T1;
  440. d = c;
  441. c = b;
  442. b = a;
  443. a = T1 + T2;
  444. j++;
  445. } while (j < 64);
  446. /* Compute the current intermediate hash value */
  447. context->state[0] += a;
  448. context->state[1] += b;
  449. context->state[2] += c;
  450. context->state[3] += d;
  451. context->state[4] += e;
  452. context->state[5] += f;
  453. context->state[6] += g;
  454. context->state[7] += h;
  455. /* Clean up */
  456. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  457. }
  458. #endif /* SHA2_UNROLL_TRANSFORM */
  459. void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  460. unsigned int freespace, usedspace;
  461. if (len == 0) {
  462. /* Calling with no data is valid - we do nothing */
  463. return;
  464. }
  465. /* Sanity check: */
  466. assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  467. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  468. if (usedspace > 0) {
  469. /* Calculate how much free space is available in the buffer */
  470. freespace = SHA256_BLOCK_LENGTH - usedspace;
  471. if (len >= freespace) {
  472. /* Fill the buffer completely and process it */
  473. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  474. context->bitcount += freespace << 3;
  475. len -= freespace;
  476. data += freespace;
  477. SHA256_Transform(context, (sha2_word32*)context->buffer);
  478. } else {
  479. /* The buffer is not yet full */
  480. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  481. context->bitcount += len << 3;
  482. /* Clean up: */
  483. usedspace = freespace = 0;
  484. return;
  485. }
  486. }
  487. while (len >= SHA256_BLOCK_LENGTH) {
  488. /* Process as many complete blocks as we can */
  489. SHA256_Transform(context, (sha2_word32*)data);
  490. context->bitcount += SHA256_BLOCK_LENGTH << 3;
  491. len -= SHA256_BLOCK_LENGTH;
  492. data += SHA256_BLOCK_LENGTH;
  493. }
  494. if (len > 0) {
  495. /* There's left-overs, so save 'em */
  496. MEMCPY_BCOPY(context->buffer, data, len);
  497. context->bitcount += len << 3;
  498. }
  499. /* Clean up: */
  500. usedspace = freespace = 0;
  501. }
  502. void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  503. sha2_word32 *d = (sha2_word32*)digest;
  504. unsigned int usedspace;
  505. /* Sanity check: */
  506. assert(context != (SHA256_CTX*)0);
  507. /* If no digest buffer is passed, we don't bother doing this: */
  508. if (digest != (sha2_byte*)0) {
  509. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  510. #if BYTE_ORDER == LITTLE_ENDIAN
  511. /* Convert FROM host byte order */
  512. REVERSE64(context->bitcount,context->bitcount);
  513. #endif
  514. if (usedspace > 0) {
  515. /* Begin padding with a 1 bit: */
  516. context->buffer[usedspace++] = 0x80;
  517. if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  518. /* Set-up for the last transform: */
  519. MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  520. } else {
  521. if (usedspace < SHA256_BLOCK_LENGTH) {
  522. MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  523. }
  524. /* Do second-to-last transform: */
  525. SHA256_Transform(context, (sha2_word32*)context->buffer);
  526. /* And set-up for the last transform: */
  527. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  528. }
  529. } else {
  530. /* Set-up for the last transform: */
  531. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  532. /* Begin padding with a 1 bit: */
  533. *context->buffer = 0x80;
  534. }
  535. /* Set the bit count: */
  536. sha2_word64* ptr = (sha2_word64*)(&context->buffer[SHA256_SHORT_BLOCK_LENGTH]);
  537. *ptr = context->bitcount;
  538. /* Final transform: */
  539. SHA256_Transform(context, (sha2_word32*)context->buffer);
  540. #if BYTE_ORDER == LITTLE_ENDIAN
  541. {
  542. /* Convert TO host byte order */
  543. int j;
  544. for (j = 0; j < 8; j++) {
  545. REVERSE32(context->state[j],context->state[j]);
  546. *d++ = context->state[j];
  547. }
  548. }
  549. #else
  550. MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
  551. #endif
  552. }
  553. /* Clean up state data: */
  554. MEMSET_BZERO(context, sizeof(SHA256_CTX));
  555. usedspace = 0;
  556. }
  557. char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  558. sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
  559. int i;
  560. /* Sanity check: */
  561. assert(context != (SHA256_CTX*)0);
  562. if (buffer != (char*)0) {
  563. SHA256_Final(digest, context);
  564. for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  565. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  566. *buffer++ = sha2_hex_digits[*d & 0x0f];
  567. d++;
  568. }
  569. *buffer = (char)0;
  570. } else {
  571. MEMSET_BZERO(context, sizeof(SHA256_CTX));
  572. }
  573. MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
  574. return buffer;
  575. }
  576. char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  577. SHA256_CTX context;
  578. SHA256_Init(&context);
  579. SHA256_Update(&context, data, len);
  580. return SHA256_End(&context, digest);
  581. }
  582. /*** SHA-512: *********************************************************/
  583. void SHA512_Init(SHA512_CTX* context) {
  584. if (context == (SHA512_CTX*)0) {
  585. return;
  586. }
  587. MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  588. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
  589. context->bitcount[0] = context->bitcount[1] = 0;
  590. }
  591. #ifdef SHA2_UNROLL_TRANSFORM
  592. /* Unrolled SHA-512 round macros: */
  593. #if BYTE_ORDER == LITTLE_ENDIAN
  594. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  595. REVERSE64(*data++, W512[j]); \
  596. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  597. K512[j] + W512[j]; \
  598. (d) += T1, \
  599. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  600. j++
  601. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  602. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  603. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  604. K512[j] + (W512[j] = *data++); \
  605. (d) += T1; \
  606. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  607. j++
  608. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  609. #define ROUND512(a,b,c,d,e,f,g,h) \
  610. s0 = W512[(j+1)&0x0f]; \
  611. s0 = sigma0_512(s0); \
  612. s1 = W512[(j+14)&0x0f]; \
  613. s1 = sigma1_512(s1); \
  614. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  615. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  616. (d) += T1; \
  617. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  618. j++
  619. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  620. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  621. sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
  622. int j;
  623. /* Initialize registers with the prev. intermediate value */
  624. a = context->state[0];
  625. b = context->state[1];
  626. c = context->state[2];
  627. d = context->state[3];
  628. e = context->state[4];
  629. f = context->state[5];
  630. g = context->state[6];
  631. h = context->state[7];
  632. j = 0;
  633. do {
  634. ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  635. ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  636. ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  637. ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  638. ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  639. ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  640. ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  641. ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  642. } while (j < 16);
  643. /* Now for the remaining rounds up to 79: */
  644. do {
  645. ROUND512(a,b,c,d,e,f,g,h);
  646. ROUND512(h,a,b,c,d,e,f,g);
  647. ROUND512(g,h,a,b,c,d,e,f);
  648. ROUND512(f,g,h,a,b,c,d,e);
  649. ROUND512(e,f,g,h,a,b,c,d);
  650. ROUND512(d,e,f,g,h,a,b,c);
  651. ROUND512(c,d,e,f,g,h,a,b);
  652. ROUND512(b,c,d,e,f,g,h,a);
  653. } while (j < 80);
  654. /* Compute the current intermediate hash value */
  655. context->state[0] += a;
  656. context->state[1] += b;
  657. context->state[2] += c;
  658. context->state[3] += d;
  659. context->state[4] += e;
  660. context->state[5] += f;
  661. context->state[6] += g;
  662. context->state[7] += h;
  663. /* Clean up */
  664. a = b = c = d = e = f = g = h = T1 = 0;
  665. }
  666. #else /* SHA2_UNROLL_TRANSFORM */
  667. void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  668. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  669. sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
  670. int j;
  671. /* Initialize registers with the prev. intermediate value */
  672. a = context->state[0];
  673. b = context->state[1];
  674. c = context->state[2];
  675. d = context->state[3];
  676. e = context->state[4];
  677. f = context->state[5];
  678. g = context->state[6];
  679. h = context->state[7];
  680. j = 0;
  681. do {
  682. #if BYTE_ORDER == LITTLE_ENDIAN
  683. /* Convert TO host byte order */
  684. REVERSE64(*data++, W512[j]);
  685. /* Apply the SHA-512 compression function to update a..h */
  686. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  687. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  688. /* Apply the SHA-512 compression function to update a..h with copy */
  689. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  690. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  691. T2 = Sigma0_512(a) + Maj(a, b, c);
  692. h = g;
  693. g = f;
  694. f = e;
  695. e = d + T1;
  696. d = c;
  697. c = b;
  698. b = a;
  699. a = T1 + T2;
  700. j++;
  701. } while (j < 16);
  702. do {
  703. /* Part of the message block expansion: */
  704. s0 = W512[(j+1)&0x0f];
  705. s0 = sigma0_512(s0);
  706. s1 = W512[(j+14)&0x0f];
  707. s1 = sigma1_512(s1);
  708. /* Apply the SHA-512 compression function to update a..h */
  709. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  710. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  711. T2 = Sigma0_512(a) + Maj(a, b, c);
  712. h = g;
  713. g = f;
  714. f = e;
  715. e = d + T1;
  716. d = c;
  717. c = b;
  718. b = a;
  719. a = T1 + T2;
  720. j++;
  721. } while (j < 80);
  722. /* Compute the current intermediate hash value */
  723. context->state[0] += a;
  724. context->state[1] += b;
  725. context->state[2] += c;
  726. context->state[3] += d;
  727. context->state[4] += e;
  728. context->state[5] += f;
  729. context->state[6] += g;
  730. context->state[7] += h;
  731. /* Clean up */
  732. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  733. }
  734. #endif /* SHA2_UNROLL_TRANSFORM */
  735. void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  736. unsigned int freespace, usedspace;
  737. if (len == 0) {
  738. /* Calling with no data is valid - we do nothing */
  739. return;
  740. }
  741. /* Sanity check: */
  742. assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  743. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  744. if (usedspace > 0) {
  745. /* Calculate how much free space is available in the buffer */
  746. freespace = SHA512_BLOCK_LENGTH - usedspace;
  747. if (len >= freespace) {
  748. /* Fill the buffer completely and process it */
  749. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  750. ADDINC128(context->bitcount, freespace << 3);
  751. len -= freespace;
  752. data += freespace;
  753. SHA512_Transform(context, (sha2_word64*)context->buffer);
  754. } else {
  755. /* The buffer is not yet full */
  756. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  757. ADDINC128(context->bitcount, len << 3);
  758. /* Clean up: */
  759. usedspace = freespace = 0;
  760. return;
  761. }
  762. }
  763. while (len >= SHA512_BLOCK_LENGTH) {
  764. /* Process as many complete blocks as we can */
  765. SHA512_Transform(context, (sha2_word64*)data);
  766. ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  767. len -= SHA512_BLOCK_LENGTH;
  768. data += SHA512_BLOCK_LENGTH;
  769. }
  770. if (len > 0) {
  771. /* There's left-overs, so save 'em */
  772. MEMCPY_BCOPY(context->buffer, data, len);
  773. ADDINC128(context->bitcount, len << 3);
  774. }
  775. /* Clean up: */
  776. usedspace = freespace = 0;
  777. }
  778. void SHA512_Last(SHA512_CTX* context) {
  779. unsigned int usedspace;
  780. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  781. #if BYTE_ORDER == LITTLE_ENDIAN
  782. /* Convert FROM host byte order */
  783. REVERSE64(context->bitcount[0],context->bitcount[0]);
  784. REVERSE64(context->bitcount[1],context->bitcount[1]);
  785. #endif
  786. if (usedspace > 0) {
  787. /* Begin padding with a 1 bit: */
  788. context->buffer[usedspace++] = 0x80;
  789. if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  790. /* Set-up for the last transform: */
  791. MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  792. } else {
  793. if (usedspace < SHA512_BLOCK_LENGTH) {
  794. MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  795. }
  796. /* Do second-to-last transform: */
  797. SHA512_Transform(context, (sha2_word64*)context->buffer);
  798. /* And set-up for the last transform: */
  799. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
  800. }
  801. } else {
  802. /* Prepare for final transform: */
  803. MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  804. /* Begin padding with a 1 bit: */
  805. *context->buffer = 0x80;
  806. }
  807. /* Store the length of input data (in bits): */
  808. sha2_word64 *ptr = (sha2_word64*)(&context->buffer[SHA512_SHORT_BLOCK_LENGTH]);
  809. *ptr = context->bitcount[1];
  810. ptr = (sha2_word64*)(&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8]);
  811. *ptr = context->bitcount[0];
  812. /* Final transform: */
  813. SHA512_Transform(context, (sha2_word64*)context->buffer);
  814. }
  815. void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  816. sha2_word64 *d = (sha2_word64*)digest;
  817. /* Sanity check: */
  818. assert(context != (SHA512_CTX*)0);
  819. /* If no digest buffer is passed, we don't bother doing this: */
  820. if (digest != (sha2_byte*)0) {
  821. SHA512_Last(context);
  822. /* Save the hash data for output: */
  823. #if BYTE_ORDER == LITTLE_ENDIAN
  824. {
  825. /* Convert TO host byte order */
  826. int j;
  827. for (j = 0; j < 8; j++) {
  828. REVERSE64(context->state[j],context->state[j]);
  829. *d++ = context->state[j];
  830. }
  831. }
  832. #else
  833. MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
  834. #endif
  835. }
  836. /* Zero out state data */
  837. MEMSET_BZERO(context, sizeof(SHA512_CTX));
  838. }
  839. char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  840. sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
  841. int i;
  842. /* Sanity check: */
  843. assert(context != (SHA512_CTX*)0);
  844. if (buffer != (char*)0) {
  845. SHA512_Final(digest, context);
  846. for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  847. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  848. *buffer++ = sha2_hex_digits[*d & 0x0f];
  849. d++;
  850. }
  851. *buffer = (char)0;
  852. } else {
  853. MEMSET_BZERO(context, sizeof(SHA512_CTX));
  854. }
  855. MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
  856. return buffer;
  857. }
  858. char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  859. SHA512_CTX context;
  860. SHA512_Init(&context);
  861. SHA512_Update(&context, data, len);
  862. return SHA512_End(&context, digest);
  863. }
  864. /*** SHA-384: *********************************************************/
  865. void SHA384_Init(SHA384_CTX* context) {
  866. if (context == (SHA384_CTX*)0) {
  867. return;
  868. }
  869. MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
  870. MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
  871. context->bitcount[0] = context->bitcount[1] = 0;
  872. }
  873. void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  874. SHA512_Update((SHA512_CTX*)context, data, len);
  875. }
  876. void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  877. sha2_word64 *d = (sha2_word64*)digest;
  878. /* Sanity check: */
  879. assert(context != (SHA384_CTX*)0);
  880. /* If no digest buffer is passed, we don't bother doing this: */
  881. if (digest != (sha2_byte*)0) {
  882. SHA512_Last((SHA512_CTX*)context);
  883. /* Save the hash data for output: */
  884. #if BYTE_ORDER == LITTLE_ENDIAN
  885. {
  886. /* Convert TO host byte order */
  887. int j;
  888. for (j = 0; j < 6; j++) {
  889. REVERSE64(context->state[j],context->state[j]);
  890. *d++ = context->state[j];
  891. }
  892. }
  893. #else
  894. MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
  895. #endif
  896. }
  897. /* Zero out state data */
  898. MEMSET_BZERO(context, sizeof(SHA384_CTX));
  899. }
  900. char *SHA384_End(SHA384_CTX* context, char buffer[]) {
  901. sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
  902. int i;
  903. /* Sanity check: */
  904. assert(context != (SHA384_CTX*)0);
  905. if (buffer != (char*)0) {
  906. SHA384_Final(digest, context);
  907. for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
  908. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  909. *buffer++ = sha2_hex_digits[*d & 0x0f];
  910. d++;
  911. }
  912. *buffer = (char)0;
  913. } else {
  914. MEMSET_BZERO(context, sizeof(SHA384_CTX));
  915. }
  916. MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
  917. return buffer;
  918. }
  919. char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
  920. SHA384_CTX context;
  921. SHA384_Init(&context);
  922. SHA384_Update(&context, data, len);
  923. return SHA384_End(&context, digest);
  924. }