|
|
#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
typedef int TensorIndex; #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "testing/base/public/benchmark.h"
using Eigen::Tensor; using Eigen::TensorMap;
// TODO(bsteiner): also templatize on the input type since we have users
// for int8 as well as floats.
template <typename Device> class BenchmarkSuite { public: BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) : m_(m), k_(k), n_(n), device_(device) { initialize(); }
BenchmarkSuite(const Device& device, size_t m) : m_(m), k_(m), n_(m), device_(device) { initialize(); }
~BenchmarkSuite() { device_.deallocate(a_); device_.deallocate(b_); device_.deallocate(c_); }
void memcpy(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { device_.memcpy(c_, a_, m_ * m_ * sizeof(float)); } // Record the number of values copied per second
finalizeBenchmark(m_ * m_ * num_iters); }
void random(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); const Eigen::array<TensorIndex, 2> sizes(m_, m_); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = C.random(); } // Record the number of random numbers generated per second
finalizeBenchmark(m_ * m_ * num_iters); }
void slicing(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); const Eigen::array<TensorIndex, 2> sizes(m_, m_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
const Eigen::DSizes<TensorIndex, 2> quarter_sizes(Eigen::array<TensorIndex, 2>(m_/2, m_/2)); const Eigen::DSizes<TensorIndex, 2> first_quadrant(Eigen::array<TensorIndex, 2>(0, 0)); const Eigen::DSizes<TensorIndex, 2> second_quadrant(Eigen::array<TensorIndex, 2>(0, m_/2)); const Eigen::DSizes<TensorIndex, 2> third_quadrant(Eigen::array<TensorIndex, 2>(m_/2, 0)); const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(Eigen::array<TensorIndex, 2>(m_/2, m_/2));
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.slice(first_quadrant, quarter_sizes).device(device_) = A.slice(first_quadrant, quarter_sizes); C.slice(second_quadrant, quarter_sizes).device(device_) = B.slice(second_quadrant, quarter_sizes); C.slice(third_quadrant, quarter_sizes).device(device_) = A.slice(third_quadrant, quarter_sizes); C.slice(fourth_quadrant, quarter_sizes).device(device_) = B.slice(fourth_quadrant, quarter_sizes); } // Record the number of values copied from the rhs slice to the lhs slice
// each second
finalizeBenchmark(m_ * m_ * num_iters); }
void shuffling(int num_iters) { eigen_assert(m_ == n_); const Eigen::array<TensorIndex, 2> size_a(m_, k_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); const Eigen::array<TensorIndex, 2> size_b(k_, m_); TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
const Eigen::array<int, 2> shuffle(1, 0);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.shuffle(shuffle); } // Record the number of values shuffled from A and copied to B each second
finalizeBenchmark(m_ * k_ * num_iters); }
void padding(int num_iters) { eigen_assert(m_ == k_); const Eigen::array<TensorIndex, 2> size_a(m_, k_-3); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); const Eigen::array<TensorIndex, 2> size_b(k_, m_); TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.pad(paddings); } // Record the number of values copied from the padded tensor A each second
finalizeBenchmark(m_ * k_ * num_iters); }
void striding(int num_iters) { eigen_assert(m_ == k_); const Eigen::array<TensorIndex, 2> size_a(m_, k_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); const Eigen::array<TensorIndex, 2> size_b(m_, k_ / 2); TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
const Eigen::array<TensorIndex, 2> strides(1, 2);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { B.device(device_) = A.stride(strides); } // Record the number of values copied from the padded tensor A each second
finalizeBenchmark(m_ * k_ * num_iters); }
void broadcasting(int num_iters) { const Eigen::array<TensorIndex, 2> size_a(m_, 1); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); const Eigen::array<TensorIndex, 2> size_c(m_, n_); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c);
#if defined(__CUDACC__)
// nvcc doesn't support cxx11
const Eigen::array<int, 2> broadcast(1, n_); #else
// Take advantage of cxx11 to give the compiler information it can use to
// optimize the code.
Eigen::IndexList<Eigen::type2index<1>, int> broadcast; broadcast.set(1, n_); #endif
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.broadcast(broadcast); } // Record the number of values broadcasted from A and copied to C each second
finalizeBenchmark(m_ * n_ * num_iters); }
void coeffWiseOp(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); const Eigen::array<TensorIndex, 2> sizes(m_, m_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7); } // Record the number of FLOP executed per second (2 multiplications and
// 1 addition per value)
finalizeBenchmark(3 * m_ * m_ * num_iters); }
void algebraicFunc(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); const Eigen::array<TensorIndex, 2> sizes(m_, m_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); } // Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters); }
void transcendentalFunc(int num_iters) { eigen_assert(m_ == k_ && k_ == n_); const Eigen::array<TensorIndex, 2> sizes(m_, m_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.exp() + B.log(); } // Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters); }
// Simple reduction
void reduction(int num_iters) { const Eigen::array<TensorIndex, 2> input_size(k_, n_); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size); const Eigen::array<TensorIndex, 1> output_size(n_); TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size);
const Eigen::array<TensorIndex, 1> sum_along_dim(0);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = B.sum(sum_along_dim); } // Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters); }
// do a contraction which is equivalent to a matrix multiplication
void contraction(int num_iters) { const Eigen::array<TensorIndex, 2> sizeA(m_, k_); const Eigen::array<TensorIndex, 2> sizeB(k_, n_); const Eigen::array<TensorIndex, 2> sizeC(m_, n_);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA); const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<float, 2>::DimensionPair DimPair; const Eigen::array<DimPair, 1> dims(DimPair(1, 0));
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.contract(B, dims); } // Record the number of FLOP executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters); }
void convolution(int num_iters, int kernel_x, int kernel_y) { const Eigen::array<TensorIndex, 2> input_sizes(m_, n_); TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes); const Eigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y); TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes); const Eigen::array<TensorIndex, 2> result_sizes( m_ - kernel_x + 1, n_ - kernel_y + 1); TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes); Eigen::array<Tensor<float, 2>::Index, 2> dims(0, 1);
StartBenchmarkTiming(); for (int iter = 0; iter < num_iters; ++iter) { C.device(device_) = A.convolve(B, dims); } // Record the number of FLOP executed per second (kernel_size
// multiplications and additions for each value in the resulting tensor)
finalizeBenchmark( (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters); }
private: void initialize() { a_ = (float *) device_.allocate(m_ * k_ * sizeof(float)); b_ = (float *) device_.allocate(k_ * n_ * sizeof(float)); c_ = (float *) device_.allocate(m_ * n_ * sizeof(float));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(float)); device_.memset(b_, 23, k_ * n_ * sizeof(float)); device_.memset(c_, 31, m_ * n_ * sizeof(float));
BenchmarkUseRealTime(); }
inline void finalizeBenchmark(int64 num_items) { #if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { device_.synchronize(); } #endif
StopBenchmarkTiming(); SetBenchmarkItemsProcessed(num_items); }
size_t m_; size_t k_; size_t n_; float* a_; float* b_; float* c_; Device device_; }; #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
|