|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename T> EIGEN_DONT_INLINE T copy(const T& x) { return x; }
template<typename MatrixType> void stable_norm(const MatrixType& m) { /* this test covers the following files:
StableNorm.h */ using std::sqrt; using std::abs; typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; bool complex_real_product_ok = true;
// Check the basic machine-dependent constants.
{ int ibeta, it, iemin, iemax;
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); Scalar inf = std::numeric_limits<RealScalar>::infinity(); if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) ) { complex_real_product_ok = false; static bool first = true; if(first) std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl; first = false; } }
Index rows = m.rows(); Index cols = m.cols();
// get a non-zero random factor
Scalar factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols);
vbig.fill(big); vsmall.fill(small);
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
RealScalar size = static_cast<RealScalar>(m.size());
// test numext::isfinite
VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity())); VERIFY(!(numext::isfinite)(sqrt(-abs(big))));
// test overflow
VERIFY((numext::isfinite)(sqrt(size)*abs(big))); VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big));
// test underflow
VERIFY((numext::isfinite)(sqrt(size)*abs(small))); VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail
VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small));
// Test compilation of cwise() version
VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); // test NaN, +inf, -inf
MatrixType v; Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1);
// NaN
{ v = vrand; v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm())); } // +inf
{ v = vrand; v(i,j) = std::numeric_limits<RealScalar>::infinity(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); if(complex_real_product_ok){ VERIFY(isPlusInf(v.stableNorm())); } VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); } // -inf
{ v = vrand; v(i,j) = -std::numeric_limits<RealScalar>::infinity(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); if(complex_real_product_ok) { VERIFY(isPlusInf(v.stableNorm())); } VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); } // mix
{ Index i2 = internal::random<Index>(0,rows-1); Index j2 = internal::random<Index>(0,cols-1); v = vrand; v(i,j) = -std::numeric_limits<RealScalar>::infinity(); v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm())); } }
void test_stable_norm() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); } }
|