|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include "svd_fill.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; RealScalar eival_eps = (std::min)(test_precision<RealScalar>(), NumTraits<Scalar>::dummy_precision()*20000); SelfAdjointEigenSolver<MatrixType> eiSymm(m); VERIFY_IS_EQUAL(eiSymm.info(), Success); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiSymm.eigenvectors(), eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); VERIFY_IS_UNITARY(eiSymm.eigenvectors());
if(m.cols()<=4) { SelfAdjointEigenSolver<MatrixType> eiDirect; eiDirect.computeDirect(m); VERIFY_IS_EQUAL(eiDirect.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiDirect.eigenvalues()); if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) { std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" << "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n" << "diff: " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" << "error (eps): " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << " (" << eival_eps << ")\n"; } VERIFY(eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps)); VERIFY_IS_APPROX(m.template selfadjointView<Lower>() * eiDirect.eigenvectors(), eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal()); VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues()); VERIFY_IS_UNITARY(eiDirect.eigenvectors()); } }
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { typedef typename MatrixType::Index Index; /* this test covers the following files:
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ Index rows = m.rows(); Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
RealScalar largerEps = 10*test_precision<RealScalar>();
MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; MatrixType symmC = symmA; svd_fill_random(symmA,Symmetric);
symmA.template triangularView<StrictlyUpper>().setZero(); symmC.template triangularView<StrictlyUpper>().setZero();
MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; symmB.template triangularView<StrictlyUpper>().setZero(); CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) );
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); // generalized eigen pb
GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); // generalized eigen problem Ax = lBx
eiSymmGen.compute(symmC, symmB,Ax_lBx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
// generalized eigen problem BAx = lx
eiSymmGen.compute(symmC, symmB,BAx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
// generalized eigen problem ABx = lx
eiSymmGen.compute(symmC, symmB,ABx_lx); VERIFY_IS_EQUAL(eiSymmGen.info(), Success); VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
eiSymm.compute(symmC); MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
eiSymmUninitialized.compute(symmA, false); VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
// test Tridiagonalization's methods
Tridiagonalization<MatrixType> tridiag(symmC); VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT(); if(rows>1 && cols>1) { // FIXME check that upper and lower part are 0:
//VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
} VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal()); VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>()); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); // Test computation of eigenvalues from tridiagonal matrix
if(rows > 1) { SelfAdjointEigenSolver<MatrixType> eiSymmTridiag; eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors); VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues()); VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose()); }
if (rows > 1 && rows < 20) { // Test matrix with NaN
symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); }
// regression test for bug 1098
{ SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a); eig.compute(a.adjoint() * a); } }
void bug_854() { Matrix3d m; m << 850.961, 51.966, 0, 51.966, 254.841, 0, 0, 0, 0; selfadjointeigensolver_essential_check(m); }
void bug_1014() { Matrix3d m; m << 0.11111111111111114658, 0, 0, 0, 0.11111111111111109107, 0, 0, 0, 0.11111111111111107719; selfadjointeigensolver_essential_check(m); }
void test_eigensolver_selfadjoint() { int s = 0; for(int i = 0; i < g_repeat; i++) { // trivial test for 1x1 matrices:
CALL_SUBTEST_1( selfadjointeigensolver(Matrix<float, 1, 1>())); CALL_SUBTEST_1( selfadjointeigensolver(Matrix<double, 1, 1>())); // very important to test 3x3 and 2x2 matrices since we provide special paths for them
CALL_SUBTEST_12( selfadjointeigensolver(Matrix2f()) ); CALL_SUBTEST_12( selfadjointeigensolver(Matrix2d()) ); CALL_SUBTEST_13( selfadjointeigensolver(Matrix3f()) ); CALL_SUBTEST_13( selfadjointeigensolver(Matrix3d()) ); CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) ); CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) ); CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) ); CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) ); TEST_SET_BUT_UNUSED_VARIABLE(s)
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); } CALL_SUBTEST_13( bug_854() ); CALL_SUBTEST_13( bug_1014() );
// Test problem size constructors
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s)); CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s)); TEST_SET_BUT_UNUSED_VARIABLE(s) }
|