You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

182 lines
7.4 KiB

  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra.
  3. //
  4. // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #define EIGEN_NO_STATIC_ASSERT
  10. #include "main.h"
  11. template<bool IsInteger> struct adjoint_specific;
  12. template<> struct adjoint_specific<true> {
  13. template<typename Vec, typename Mat, typename Scalar>
  14. static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
  15. VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
  16. VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
  17. // check compatibility of dot and adjoint
  18. VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
  19. }
  20. };
  21. template<> struct adjoint_specific<false> {
  22. template<typename Vec, typename Mat, typename Scalar>
  23. static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
  24. typedef typename NumTraits<Scalar>::Real RealScalar;
  25. using std::abs;
  26. RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
  27. VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
  28. VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
  29. VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
  30. // check normalized() and normalize()
  31. VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
  32. v3 = v1;
  33. v3.normalize();
  34. VERIFY_IS_APPROX(v1, v1.norm() * v3);
  35. VERIFY_IS_APPROX(v3, v1.normalized());
  36. VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
  37. // check compatibility of dot and adjoint
  38. ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
  39. VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
  40. // check that Random().normalized() works: tricky as the random xpr must be evaluated by
  41. // normalized() in order to produce a consistent result.
  42. VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
  43. }
  44. };
  45. template<typename MatrixType> void adjoint(const MatrixType& m)
  46. {
  47. /* this test covers the following files:
  48. Transpose.h Conjugate.h Dot.h
  49. */
  50. using std::abs;
  51. typedef typename MatrixType::Index Index;
  52. typedef typename MatrixType::Scalar Scalar;
  53. typedef typename NumTraits<Scalar>::Real RealScalar;
  54. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  55. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  56. const Index PacketSize = internal::packet_traits<Scalar>::size;
  57. Index rows = m.rows();
  58. Index cols = m.cols();
  59. MatrixType m1 = MatrixType::Random(rows, cols),
  60. m2 = MatrixType::Random(rows, cols),
  61. m3(rows, cols),
  62. square = SquareMatrixType::Random(rows, rows);
  63. VectorType v1 = VectorType::Random(rows),
  64. v2 = VectorType::Random(rows),
  65. v3 = VectorType::Random(rows),
  66. vzero = VectorType::Zero(rows);
  67. Scalar s1 = internal::random<Scalar>(),
  68. s2 = internal::random<Scalar>();
  69. // check basic compatibility of adjoint, transpose, conjugate
  70. VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
  71. VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
  72. // check multiplicative behavior
  73. VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
  74. VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
  75. // check basic properties of dot, squaredNorm
  76. VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
  77. VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
  78. adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
  79. VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
  80. // like in testBasicStuff, test operator() to check const-qualification
  81. Index r = internal::random<Index>(0, rows-1),
  82. c = internal::random<Index>(0, cols-1);
  83. VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
  84. VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
  85. // check inplace transpose
  86. m3 = m1;
  87. m3.transposeInPlace();
  88. VERIFY_IS_APPROX(m3,m1.transpose());
  89. m3.transposeInPlace();
  90. VERIFY_IS_APPROX(m3,m1);
  91. if(PacketSize<m3.rows() && PacketSize<m3.cols())
  92. {
  93. m3 = m1;
  94. Index i = internal::random<Index>(0,m3.rows()-PacketSize);
  95. Index j = internal::random<Index>(0,m3.cols()-PacketSize);
  96. m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
  97. VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
  98. m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
  99. VERIFY_IS_APPROX(m3,m1);
  100. }
  101. // check inplace adjoint
  102. m3 = m1;
  103. m3.adjointInPlace();
  104. VERIFY_IS_APPROX(m3,m1.adjoint());
  105. m3.transposeInPlace();
  106. VERIFY_IS_APPROX(m3,m1.conjugate());
  107. // check mixed dot product
  108. typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
  109. RealVectorType rv1 = RealVectorType::Random(rows);
  110. VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
  111. VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
  112. }
  113. void test_adjoint()
  114. {
  115. for(int i = 0; i < g_repeat; i++) {
  116. CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
  117. CALL_SUBTEST_2( adjoint(Matrix3d()) );
  118. CALL_SUBTEST_3( adjoint(Matrix4f()) );
  119. CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
  120. CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  121. CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
  122. // Complement for 128 bits vectorization:
  123. CALL_SUBTEST_8( adjoint(Matrix2d()) );
  124. CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
  125. // 256 bits vectorization:
  126. CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
  127. CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
  128. CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
  129. }
  130. // test a large static matrix only once
  131. CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
  132. #ifdef EIGEN_TEST_PART_4
  133. {
  134. MatrixXcf a(10,10), b(10,10);
  135. VERIFY_RAISES_ASSERT(a = a.transpose());
  136. VERIFY_RAISES_ASSERT(a = a.transpose() + b);
  137. VERIFY_RAISES_ASSERT(a = b + a.transpose());
  138. VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
  139. VERIFY_RAISES_ASSERT(a = a.adjoint());
  140. VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
  141. VERIFY_RAISES_ASSERT(a = b + a.adjoint());
  142. // no assertion should be triggered for these cases:
  143. a.transpose() = a.transpose();
  144. a.transpose() += a.transpose();
  145. a.transpose() += a.transpose() + b;
  146. a.transpose() = a.adjoint();
  147. a.transpose() += a.adjoint();
  148. a.transpose() += a.adjoint() + b;
  149. }
  150. #endif
  151. }