|
|
namespace Eigen {
/** \eigenManualPage QuickRefPage Quick reference guide
\eigenAutoToc
<hr>
<a href="#" class="top">top</a> \section QuickRef_Headers Modules and Header files
The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.
<table class="manual"> <tr><th>Module</th><th>Header file</th><th>Contents</th></tr> <tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> <tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> <tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> <tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> <tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr> <tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> <tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> <tr ><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr> <tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> <tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> </table>
<a href="#" class="top">top</a> \section QuickRef_Types Array, matrix and vector types
\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: \code typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; \endcode
\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: \code Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) Matrix<double, 13, 3> // Fully fixed (usually allocated on stack) \endcode
In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: <table class="example"> <tr><th>Matrices</th><th>Arrays</th></tr> <tr><td>\code Matrix<float,Dynamic,Dynamic> <=> MatrixXf Matrix<double,Dynamic,1> <=> VectorXd Matrix<int,1,Dynamic> <=> RowVectorXi Matrix<float,3,3> <=> Matrix3f Matrix<float,4,1> <=> Vector4f \endcode</td><td>\code Array<float,Dynamic,Dynamic> <=> ArrayXXf Array<double,Dynamic,1> <=> ArrayXd Array<int,1,Dynamic> <=> RowArrayXi Array<float,3,3> <=> Array33f Array<float,4,1> <=> Array4f \endcode</td></tr> </table>
Conversion between the matrix and array worlds: \code Array44f a1, a1; Matrix4f m1, m2; m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. a1 = m1 * m2; // matrix product, implicit conversion from matrix to array. a2 = a1 + m1.array(); // mixing array and matrix is forbidden m2 = a1.matrix() + m1; // and explicit conversion is required. ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients MatrixWrapper<Array44f> a1m(a1); \endcode
In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only \li <a name="arrayonly"></a>\arrayworld array objects only
\subsection QuickRef_Basics Basic matrix manipulation
<table class="manual"> <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> <tr><td>Constructors</td> <td>\code Vector4d v4; Vector2f v1(x, y); Array3i v2(x, y, z); Vector4d v3(x, y, z, w);
VectorXf v5; // empty object ArrayXf v6(size); \endcode</td><td>\code Matrix4f m1;
MatrixXf m5; // empty object MatrixXf m6(nb_rows, nb_columns); \endcode</td><td class="note"> By default, the coefficients \n are left uninitialized</td></tr> <tr class="alt"><td>Comma initializer</td> <td>\code Vector3f v1; v1 << x, y, z; ArrayXf v2(4); v2 << 1, 2, 3, 4;
\endcode</td><td>\code Matrix3f m1; m1 << 1, 2, 3, 4, 5, 6, 7, 8, 9; \endcode</td><td></td></tr>
<tr><td>Comma initializer (bis)</td> <td colspan="2"> \include Tutorial_commainit_02.cpp </td> <td> output: \verbinclude Tutorial_commainit_02.out </td> </tr>
<tr class="alt"><td>Runtime info</td> <td>\code vector.size();
vector.innerStride(); vector.data(); \endcode</td><td>\code matrix.rows(); matrix.cols(); matrix.innerSize(); matrix.outerSize(); matrix.innerStride(); matrix.outerStride(); matrix.data(); \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> <tr><td>Compile-time info</td> <td colspan="2">\code ObjectType::Scalar ObjectType::RowsAtCompileTime ObjectType::RealScalar ObjectType::ColsAtCompileTime ObjectType::Index ObjectType::SizeAtCompileTime \endcode</td><td></td></tr> <tr class="alt"><td>Resizing</td> <td>\code vector.resize(size);
vector.resizeLike(other_vector); vector.conservativeResize(size); \endcode</td><td>\code matrix.resize(nb_rows, nb_cols); matrix.resize(Eigen::NoChange, nb_cols); matrix.resize(nb_rows, Eigen::NoChange); matrix.resizeLike(other_matrix); matrix.conservativeResize(nb_rows, nb_cols); \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>
<tr><td>Coeff access with \n range checking</td> <td>\code vector(i) vector.x() vector[i] vector.y() vector.z() vector.w() \endcode</td><td>\code matrix(i,j) \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>
<tr class="alt"><td>Coeff access without \n range checking</td> <td>\code vector.coeff(i) vector.coeffRef(i) \endcode</td><td>\code matrix.coeff(i,j) matrix.coeffRef(i,j) \endcode</td><td></td></tr>
<tr><td>Assignment/copy</td> <td colspan="2">\code object = expression; object_of_float = expression_of_double.cast<float>(); \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>
</table>
\subsection QuickRef_PredefMat Predefined Matrices
<table class="manual"> <tr> <th>Fixed-size matrix or vector</th> <th>Dynamic-size matrix</th> <th>Dynamic-size vector</th> </tr> <tr style="border-bottom-style: none;"> <td> \code typedef {Matrix3f|Array33f} FixedXD; FixedXD x;
x = FixedXD::Zero(); x = FixedXD::Ones(); x = FixedXD::Constant(value); x = FixedXD::Random(); x = FixedXD::LinSpaced(size, low, high);
x.setZero(); x.setOnes(); x.setConstant(value); x.setRandom(); x.setLinSpaced(size, low, high); \endcode </td> <td> \code typedef {MatrixXf|ArrayXXf} Dynamic2D; Dynamic2D x;
x = Dynamic2D::Zero(rows, cols); x = Dynamic2D::Ones(rows, cols); x = Dynamic2D::Constant(rows, cols, value); x = Dynamic2D::Random(rows, cols); N/A
x.setZero(rows, cols); x.setOnes(rows, cols); x.setConstant(rows, cols, value); x.setRandom(rows, cols); N/A \endcode </td> <td> \code typedef {VectorXf|ArrayXf} Dynamic1D; Dynamic1D x;
x = Dynamic1D::Zero(size); x = Dynamic1D::Ones(size); x = Dynamic1D::Constant(size, value); x = Dynamic1D::Random(size); x = Dynamic1D::LinSpaced(size, low, high);
x.setZero(size); x.setOnes(size); x.setConstant(size, value); x.setRandom(size); x.setLinSpaced(size, low, high); \endcode </td> </tr>
<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> <tr style="border-bottom-style: none;"> <td> \code x = FixedXD::Identity(); x.setIdentity();
Vector3f::UnitX() // 1 0 0 Vector3f::UnitY() // 0 1 0 Vector3f::UnitZ() // 0 0 1 \endcode </td> <td> \code x = Dynamic2D::Identity(rows, cols); x.setIdentity(rows, cols);
N/A \endcode </td> <td>\code N/A
VectorXf::Unit(size,i) VectorXf::Unit(4,1) == Vector4f(0,1,0,0) == Vector4f::UnitY() \endcode </td> </tr> </table>
\subsection QuickRef_Map Mapping external arrays
<table class="manual"> <tr> <td>Contiguous \n memory</td> <td>\code float data[] = {1,2,3,4}; Map<Vector3f> v1(data); // uses v1 as a Vector3f object Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object Map<Array22f> m1(data); // uses m1 as a Array22f object Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object \endcode</td> </tr> <tr> <td>Typical usage \n of strides</td> <td>\code float data[] = {1,2,3,4,5,6,7,8,9}; Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| \endcode</td> </tr> </table>
<a href="#" class="top">top</a> \section QuickRef_ArithmeticOperators Arithmetic Operators
<table class="manual"> <tr><td> add \n subtract</td><td>\code mat3 = mat1 + mat2; mat3 += mat1; mat3 = mat1 - mat2; mat3 -= mat1;\endcode </td></tr> <tr class="alt"><td> scalar product</td><td>\code mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; mat3 = mat1 / s1; mat3 /= s1;\endcode </td></tr> <tr><td> matrix/vector \n products \matrixworld</td><td>\code col2 = mat1 * col1; row2 = row1 * mat1; row1 *= mat1; mat3 = mat1 * mat2; mat3 *= mat1; \endcode </td></tr> <tr class="alt"><td> transposition \n adjoint \matrixworld</td><td>\code mat1 = mat2.transpose(); mat1.transposeInPlace(); mat1 = mat2.adjoint(); mat1.adjointInPlace(); \endcode </td></tr> <tr><td> \link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code scalar = vec1.dot(vec2); scalar = col1.adjoint() * col2; scalar = (col1.adjoint() * col2).value();\endcode </td></tr> <tr class="alt"><td> outer product \matrixworld</td><td>\code mat = col1 * col2.transpose();\endcode </td></tr>
<tr><td> \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code scalar = vec1.norm(); scalar = vec1.squaredNorm() vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode </td></tr>
<tr class="alt"><td> \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code #include <Eigen/Geometry> vec3 = vec1.cross(vec2);\endcode</td></tr> </table>
<a href="#" class="top">top</a> \section QuickRef_Coeffwise Coefficient-wise \& Array operators
In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions. Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays, or available through .array() for vectors and matrices:
<table class="manual"> <tr><td>Arithmetic operators</td><td>\code array1 * array2 array1 / array2 array1 *= array2 array1 /= array2 array1 + scalar array1 - scalar array1 += scalar array1 -= scalar \endcode</td></tr> <tr><td>Comparisons</td><td>\code array1 < array2 array1 > array2 array1 < scalar array1 > scalar array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar array1 == array2 array1 != array2 array1 == scalar array1 != scalar array1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar) \endcode</td></tr> <tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code array1.abs2() array1.abs() abs(array1) array1.sqrt() sqrt(array1) array1.log() log(array1) array1.log10() log10(array1) array1.exp() exp(array1) array1.pow(array2) pow(array1,array2) array1.pow(scalar) pow(array1,scalar) pow(scalar,array2) array1.square() array1.cube() array1.inverse()
array1.sin() sin(array1) array1.cos() cos(array1) array1.tan() tan(array1) array1.asin() asin(array1) array1.acos() acos(array1) array1.atan() atan(array1) array1.sinh() sinh(array1) array1.cosh() cosh(array1) array1.tanh() tanh(array1) array1.arg() arg(array1)
array1.floor() floor(array1) array1.ceil() ceil(array1) array1.round() round(aray1)
array1.isFinite() isfinite(array1) array1.isInf() isinf(array1) array1.isNaN() isnan(array1) \endcode </td></tr> </table>
The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types:
<table class="manual"> <tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr> <tr><td>\code mat1.real() mat1.imag() mat1.conjugate() \endcode </td><td>\code real(array1) imag(array1) conj(array1) \endcode </td><td> \code // read-write, no-op for real expressions // read-only for real, read-write for complexes // no-op for real expressions \endcode </td></tr> </table>
Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods: <table class="manual"> <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> <tr><td>\code mat1.cwiseMin(mat2) mat1.cwiseMin(scalar) mat1.cwiseMax(mat2) mat1.cwiseMax(scalar) mat1.cwiseAbs2() mat1.cwiseAbs() mat1.cwiseSqrt() mat1.cwiseInverse() mat1.cwiseProduct(mat2) mat1.cwiseQuotient(mat2) mat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar) mat1.cwiseNotEqual(mat2) \endcode </td><td>\code mat1.array().min(mat2.array()) mat1.array().min(scalar) mat1.array().max(mat2.array()) mat1.array().max(scalar) mat1.array().abs2() mat1.array().abs() mat1.array().sqrt() mat1.array().inverse() mat1.array() * mat2.array() mat1.array() / mat2.array() mat1.array() == mat2.array() mat1.array() == scalar mat1.array() != mat2.array() \endcode</td></tr> </table> The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world, while the second one (based on .array()) returns an array expression. Recall that .array() has no cost, it only changes the available API and interpretation of the data.
It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11): \code mat1.unaryExpr(std::ptr_fun(foo)); mat1.unaryExpr(std::ref(foo)); mat1.unaryExpr([](double x) { return foo(x); }); \endcode
<a href="#" class="top">top</a> \section QuickRef_Reductions Reductions
Eigen provides several reduction methods such as: \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, \link MatrixBase::trace() trace() \endlink \matrixworld, \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. All reduction operations can be done matrix-wise, \link DenseBase::colwise() column-wise \endlink or \link DenseBase::rowwise() row-wise \endlink. Usage example: <table class="manual"> <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code 5 3 1 mat = 2 7 8 9 4 6 \endcode </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code 1 2 4 \endcode</td></tr> </table>
Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: \code int i, j; s = vector.minCoeff(&i); // s == vector[i] s = matrix.maxCoeff(&i, &j); // s == matrix(i,j) \endcode Typical use cases of all() and any(): \code if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... \endcode
<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices
Read-write access to a \link DenseBase::col(Index) column \endlink or a \link DenseBase::row(Index) row \endlink of a matrix (or array): \code mat1.row(i) = mat2.col(j); mat1.col(j1).swap(mat1.col(j2)); \endcode
Read-write access to sub-vectors: <table class="manual"> <tr> <th>Default versions</th> <th>Optimized versions when the size \n is known at compile time</th></tr> <th></th>
<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> <tr class="alt"><td colspan="3">
Read-write access to sub-matrices:</td></tr> <tr> <td>\code mat1.block(i,j,rows,cols)\endcode \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> <td>\code mat1.block<rows,cols>(i,j)\endcode \link DenseBase::block(Index,Index) (more) \endlink</td> <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> <tr><td>\code mat1.topLeftCorner(rows,cols) mat1.topRightCorner(rows,cols) mat1.bottomLeftCorner(rows,cols) mat1.bottomRightCorner(rows,cols)\endcode <td>\code mat1.topLeftCorner<rows,cols>() mat1.topRightCorner<rows,cols>() mat1.bottomLeftCorner<rows,cols>() mat1.bottomRightCorner<rows,cols>()\endcode <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> <tr><td>\code mat1.topRows(rows) mat1.bottomRows(rows) mat1.leftCols(cols) mat1.rightCols(cols)\endcode <td>\code mat1.topRows<rows>() mat1.bottomRows<rows>() mat1.leftCols<cols>() mat1.rightCols<cols>()\endcode <td>specialized versions of block() \n when the block fit two corners</td></tr> </table>
<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations
\subsection QuickRef_Reverse Reverse Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). \code vec.reverse() mat.colwise().reverse() mat.rowwise().reverse() vec.reverseInPlace() \endcode
\subsection QuickRef_Replicate Replicate Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) \code vec.replicate(times) vec.replicate<Times> mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() \endcode
<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices (matrix world \matrixworld)
\subsection QuickRef_Diagonal Diagonal matrices
<table class="example"> <tr><th>Operation</th><th>Code</th></tr> <tr><td> view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code mat1 = vec1.asDiagonal();\endcode </td></tr> <tr><td> Declare a diagonal matrix</td><td>\code DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); diag1.diagonal() = vector;\endcode </td></tr> <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> <td>\code vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal \endcode</td> </tr>
<tr><td>Optimized products and inverse</td> <td>\code mat3 = scalar * diag1 * mat1; mat3 += scalar * mat1 * vec1.asDiagonal(); mat3 = vec1.asDiagonal().inverse() * mat1 mat3 = mat1 * diag1.inverse() \endcode</td> </tr>
</table>
\subsection QuickRef_TriangularView Triangular views
TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
\note The .triangularView() template member function requires the \c template keyword if it is used on an object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
<table class="example"> <tr><th>Operation</th><th>Code</th></tr> <tr><td> Reference to a triangular with optional \n unit or null diagonal (read/write): </td><td>\code m.triangularView<Xxx>() \endcode \n \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower </td></tr> <tr><td> Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) </td><td>\code m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode </td></tr> <tr><td> Conversion to a dense matrix setting the opposite triangular part to zero: </td><td>\code m2 = m1.triangularView<Eigen::UnitUpper>()\endcode </td></tr> <tr><td> Products: </td><td>\code m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode </td></tr> <tr><td> Solving linear equations:\n \f$ M_2 := L_1^{-1} M_2 \f$ \n \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n \f$ M_4 := M_4 U_1^{-1} \f$ </td><td>\n \code L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode </td></tr> </table>
\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views
Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be used to store other information.
\note The .selfadjointView() template member function requires the \c template keyword if it is used on an object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.
<table class="example"> <tr><th>Operation</th><th>Code</th></tr> <tr><td> Conversion to a dense matrix: </td><td>\code m2 = m.selfadjointView<Eigen::Lower>();\endcode </td></tr> <tr><td> Product with another general matrix or vector: </td><td>\code m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode </td></tr> <tr><td> Rank 1 and rank K update: \n \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ </td><td>\n \code M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode </td></tr> <tr><td> Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) </td><td>\code M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); \endcode </td></tr> <tr><td> Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) </td><td>\code // via a standard Cholesky factorization m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); // via a Cholesky factorization with pivoting m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); \endcode </td></tr> </table>
*/
/* <table class="tutorial_code"> <tr><td> \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code mat1 = vec1.asDiagonal();\endcode </td></tr> <tr><td> Declare a diagonal matrix</td><td>\code DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); diag1.diagonal() = vector;\endcode </td></tr> <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> <td>\code vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal \endcode</td> </tr>
<tr><td>View on a triangular part of a matrix (read/write)</td> <td>\code mat2 = mat1.triangularView<Xxx>(); // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced \endcode</td></tr>
<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> <td>\code mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only \endcode</td></tr>
</table>
Optimized products: \code mat3 += scalar * vec1.asDiagonal() * mat1 mat3 += scalar * mat1 * vec1.asDiagonal() mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); \endcode
Inverse products: (all are optimized) \code mat3 = vec1.asDiagonal().inverse() * mat1 mat3 = mat1 * diag1.inverse() mat1.triangularView<Xxx>().solveInPlace(mat2) mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) \endcode
*/ }
|