|
|
// g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out
// icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out
// Compilation options:
//
// -DSCALAR=std::complex<double>
// -DSCALARA=double or -DSCALARB=double
// -DHAVE_BLAS
// -DDECOUPLED
//
#include <iostream>
#include <Eigen/Core>
#include <bench/BenchTimer.h>
using namespace std; using namespace Eigen;
#ifndef SCALAR
// #define SCALAR std::complex<float>
#define SCALAR float
#endif
#ifndef SCALARA
#define SCALARA SCALAR
#endif
#ifndef SCALARB
#define SCALARB SCALAR
#endif
typedef SCALAR Scalar; typedef NumTraits<Scalar>::Real RealScalar; typedef Matrix<SCALARA,Dynamic,Dynamic> A; typedef Matrix<SCALARB,Dynamic,Dynamic> B; typedef Matrix<Scalar,Dynamic,Dynamic> C; typedef Matrix<RealScalar,Dynamic,Dynamic> M;
#ifdef HAVE_BLAS
extern "C" { #include <Eigen/src/misc/blas.h>
}
static float fone = 1; static float fzero = 0; static double done = 1; static double szero = 0; static std::complex<float> cfone = 1; static std::complex<float> cfzero = 0; static std::complex<double> cdone = 1; static std::complex<double> cdzero = 0; static char notrans = 'N'; static char trans = 'T'; static char nonunit = 'N'; static char lower = 'L'; static char right = 'R'; static int intone = 1;
void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
sgemm_(¬rans,¬rans,&M,&N,&K,&fone, const_cast<float*>(a.data()),&lda, const_cast<float*>(b.data()),&ldb,&fone, c.data(),&ldc); }
EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
dgemm_(¬rans,¬rans,&M,&N,&K,&done, const_cast<double*>(a.data()),&lda, const_cast<double*>(b.data()),&ldb,&done, c.data(),&ldc); }
void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, const_cast<float*>((const float*)a.data()),&lda, const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, (float*)c.data(),&ldc); }
void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows();
zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, const_cast<double*>((const double*)a.data()),&lda, const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, (double*)c.data(),&ldc); }
#endif
void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) { cr.noalias() += ar * br; cr.noalias() -= ai * bi; ci.noalias() += ar * bi; ci.noalias() += ai * br; }
void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) { cr.noalias() += a * br; ci.noalias() += a * bi; }
void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) { cr.noalias() += ar * b; ci.noalias() += ai * b; }
template<typename A, typename B, typename C> EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) { c.noalias() += a * b; }
int main(int argc, char ** argv) { std::ptrdiff_t l1 = internal::queryL1CacheSize(); std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n"; std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n"; typedef internal::gebp_traits<Scalar,Scalar> Traits; std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n";
int rep = 1; // number of repetitions per try
int tries = 2; // number of tries, we keep the best
int s = 2048; int m = s; int n = s; int p = s; int cache_size1=-1, cache_size2=l2, cache_size3 = 0;
bool need_help = false; for (int i=1; i<argc;) { if(argv[i][0]=='-') { if(argv[i][1]=='s') { ++i; s = atoi(argv[i++]); m = n = p = s; if(argv[i][0]!='-') { n = atoi(argv[i++]); p = atoi(argv[i++]); } } else if(argv[i][1]=='c') { ++i; cache_size1 = atoi(argv[i++]); if(argv[i][0]!='-') { cache_size2 = atoi(argv[i++]); if(argv[i][0]!='-') cache_size3 = atoi(argv[i++]); } } else if(argv[i][1]=='t') { ++i; tries = atoi(argv[i++]); } else if(argv[i][1]=='p') { ++i; rep = atoi(argv[i++]); } } else { need_help = true; break; } }
if(need_help) { std::cout << argv[0] << " -s <matrix sizes> -c <cache sizes> -t <nb tries> -p <nb repeats>\n"; std::cout << " <matrix sizes> : size\n"; std::cout << " <matrix sizes> : rows columns depth\n"; return 1; }
#if EIGEN_VERSION_AT_LEAST(3,2,90)
if(cache_size1>0) setCpuCacheSizes(cache_size1,cache_size2,cache_size3); #endif
A a(m,p); a.setRandom(); B b(p,n); b.setRandom(); C c(m,n); c.setOnes(); C rc = c;
std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; std::ptrdiff_t mc(m), nc(n), kc(p); internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n";
C r = c;
// check the parallel product is correct
#if defined EIGEN_HAS_OPENMP
Eigen::initParallel(); int procs = omp_get_max_threads(); if(procs>1) { #ifdef HAVE_BLAS
blas_gemm(a,b,r); #else
omp_set_num_threads(1); r.noalias() += a * b; omp_set_num_threads(procs); #endif
c.noalias() += a * b; if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; } #elif defined HAVE_BLAS
blas_gemm(a,b,r); c.noalias() += a * b; if(!r.isApprox(c)) { std::cout << r - c << "\n"; std::cerr << "Warning, your product is crap!\n\n"; } #else
if(1.*m*n*p<2000.*2000*2000) { gemm(a,b,c); r.noalias() += a.cast<Scalar>() .lazyProduct( b.cast<Scalar>() ); if(!r.isApprox(c)) { std::cout << r - c << "\n"; std::cerr << "Warning, your product is crap!\n\n"; } } #endif
#ifdef HAVE_BLAS
BenchTimer tblas; c = rc; BENCH(tblas, tries, rep, blas_gemm(a,b,c)); std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; #endif
BenchTimer tmt; c = rc; BENCH(tmt, tries, rep, gemm(a,b,c)); std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n";
#ifdef EIGEN_HAS_OPENMP
if(procs>1) { BenchTimer tmono; omp_set_num_threads(1); Eigen::setNbThreads(1); c = rc; BENCH(tmono, tries, rep, gemm(a,b,c)); std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; } #endif
if(1.*m*n*p<30*30*30) { BenchTimer tmt; c = rc; BENCH(tmt, tries, rep, c.noalias()+=a.lazyProduct(b)); std::cout << "lazy cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; std::cout << "lazy real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; } #ifdef DECOUPLED
if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { M ar(m,p); ar.setRandom(); M ai(m,p); ai.setRandom(); M br(p,n); br.setRandom(); M bi(p,n); bi.setRandom(); M cr(m,n); cr.setRandom(); M ci(m,n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) { M a(m,p); a.setRandom(); M br(p,n); br.setRandom(); M bi(p,n); bi.setRandom(); M cr(m,n); cr.setRandom(); M ci(m,n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) { M ar(m,p); ar.setRandom(); M ai(m,p); ai.setRandom(); M b(p,n); b.setRandom(); M cr(m,n); cr.setRandom(); M ci(m,n); ci.setRandom(); BenchTimer t; BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; } #endif
return 0; }
|