|
|
PROGRAM CBLAT2 * * Test program for the COMPLEX Level 2 Blas. * * The program must be driven by a short data file. The first 18 records * of the file are read using list-directed input, the last 17 records * are read using the format ( A6, L2 ). An annotated example of a data * file can be obtained by deleting the first 3 characters from the * following 35 lines: * 'CBLAT2.SUMM' NAME OF SUMMARY OUTPUT FILE * 6 UNIT NUMBER OF SUMMARY FILE * 'CBLA2T.SNAP' NAME OF SNAPSHOT OUTPUT FILE * -1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0) * F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD. * F LOGICAL FLAG, T TO STOP ON FAILURES. * T LOGICAL FLAG, T TO TEST ERROR EXITS. * 16.0 THRESHOLD VALUE OF TEST RATIO * 6 NUMBER OF VALUES OF N * 0 1 2 3 5 9 VALUES OF N * 4 NUMBER OF VALUES OF K * 0 1 2 4 VALUES OF K * 4 NUMBER OF VALUES OF INCX AND INCY * 1 2 -1 -2 VALUES OF INCX AND INCY * 3 NUMBER OF VALUES OF ALPHA * (0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA * 3 NUMBER OF VALUES OF BETA * (0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA * CGEMV T PUT F FOR NO TEST. SAME COLUMNS. * CGBMV T PUT F FOR NO TEST. SAME COLUMNS. * CHEMV T PUT F FOR NO TEST. SAME COLUMNS. * CHBMV T PUT F FOR NO TEST. SAME COLUMNS. * CHPMV T PUT F FOR NO TEST. SAME COLUMNS. * CTRMV T PUT F FOR NO TEST. SAME COLUMNS. * CTBMV T PUT F FOR NO TEST. SAME COLUMNS. * CTPMV T PUT F FOR NO TEST. SAME COLUMNS. * CTRSV T PUT F FOR NO TEST. SAME COLUMNS. * CTBSV T PUT F FOR NO TEST. SAME COLUMNS. * CTPSV T PUT F FOR NO TEST. SAME COLUMNS. * CGERC T PUT F FOR NO TEST. SAME COLUMNS. * CGERU T PUT F FOR NO TEST. SAME COLUMNS. * CHER T PUT F FOR NO TEST. SAME COLUMNS. * CHPR T PUT F FOR NO TEST. SAME COLUMNS. * CHER2 T PUT F FOR NO TEST. SAME COLUMNS. * CHPR2 T PUT F FOR NO TEST. SAME COLUMNS. * * See: * * Dongarra J. J., Du Croz J. J., Hammarling S. and Hanson R. J.. * An extended set of Fortran Basic Linear Algebra Subprograms. * * Technical Memoranda Nos. 41 (revision 3) and 81, Mathematics * and Computer Science Division, Argonne National Laboratory, * 9700 South Cass Avenue, Argonne, Illinois 60439, US. * * Or * * NAG Technical Reports TR3/87 and TR4/87, Numerical Algorithms * Group Ltd., NAG Central Office, 256 Banbury Road, Oxford * OX2 7DE, UK, and Numerical Algorithms Group Inc., 1101 31st * Street, Suite 100, Downers Grove, Illinois 60515-1263, USA. * * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. INTEGER NIN PARAMETER ( NIN = 5 ) INTEGER NSUBS PARAMETER ( NSUBS = 17 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) REAL RZERO, RHALF, RONE PARAMETER ( RZERO = 0.0, RHALF = 0.5, RONE = 1.0 ) INTEGER NMAX, INCMAX PARAMETER ( NMAX = 65, INCMAX = 2 ) INTEGER NINMAX, NIDMAX, NKBMAX, NALMAX, NBEMAX PARAMETER ( NINMAX = 7, NIDMAX = 9, NKBMAX = 7, $ NALMAX = 7, NBEMAX = 7 ) * .. Local Scalars .. REAL EPS, ERR, THRESH INTEGER I, ISNUM, J, N, NALF, NBET, NIDIM, NINC, NKB, $ NOUT, NTRA LOGICAL FATAL, LTESTT, REWI, SAME, SFATAL, TRACE, $ TSTERR CHARACTER*1 TRANS CHARACTER*6 SNAMET CHARACTER*32 SNAPS, SUMMRY * .. Local Arrays .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), $ ALF( NALMAX ), AS( NMAX*NMAX ), BET( NBEMAX ), $ X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( 2*NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDMAX ), INC( NINMAX ), KB( NKBMAX ) LOGICAL LTEST( NSUBS ) CHARACTER*6 SNAMES( NSUBS ) * .. External Functions .. REAL SDIFF LOGICAL LCE EXTERNAL SDIFF, LCE * .. External Subroutines .. EXTERNAL CCHK1, CCHK2, CCHK3, CCHK4, CCHK5, CCHK6, $ CCHKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR COMMON /SRNAMC/SRNAMT * .. Data statements .. DATA SNAMES/'CGEMV ', 'CGBMV ', 'CHEMV ', 'CHBMV ', $ 'CHPMV ', 'CTRMV ', 'CTBMV ', 'CTPMV ', $ 'CTRSV ', 'CTBSV ', 'CTPSV ', 'CGERC ', $ 'CGERU ', 'CHER ', 'CHPR ', 'CHER2 ', $ 'CHPR2 '/ * .. Executable Statements .. * * Read name and unit number for summary output file and open file. * READ( NIN, FMT = * )SUMMRY READ( NIN, FMT = * )NOUT OPEN( NOUT, FILE = SUMMRY, STATUS = 'NEW' ) NOUTC = NOUT * * Read name and unit number for snapshot output file and open file. * READ( NIN, FMT = * )SNAPS READ( NIN, FMT = * )NTRA TRACE = NTRA.GE.0 IF( TRACE )THEN OPEN( NTRA, FILE = SNAPS, STATUS = 'NEW' ) END IF * Read the flag that directs rewinding of the snapshot file. READ( NIN, FMT = * )REWI REWI = REWI.AND.TRACE * Read the flag that directs stopping on any failure. READ( NIN, FMT = * )SFATAL * Read the flag that indicates whether error exits are to be tested. READ( NIN, FMT = * )TSTERR * Read the threshold value of the test ratio READ( NIN, FMT = * )THRESH * * Read and check the parameter values for the tests. * * Values of N READ( NIN, FMT = * )NIDIM IF( NIDIM.LT.1.OR.NIDIM.GT.NIDMAX )THEN WRITE( NOUT, FMT = 9997 )'N', NIDMAX GO TO 230 END IF READ( NIN, FMT = * )( IDIM( I ), I = 1, NIDIM ) DO 10 I = 1, NIDIM IF( IDIM( I ).LT.0.OR.IDIM( I ).GT.NMAX )THEN WRITE( NOUT, FMT = 9996 )NMAX GO TO 230 END IF 10 CONTINUE * Values of K READ( NIN, FMT = * )NKB IF( NKB.LT.1.OR.NKB.GT.NKBMAX )THEN WRITE( NOUT, FMT = 9997 )'K', NKBMAX GO TO 230 END IF READ( NIN, FMT = * )( KB( I ), I = 1, NKB ) DO 20 I = 1, NKB IF( KB( I ).LT.0 )THEN WRITE( NOUT, FMT = 9995 ) GO TO 230 END IF 20 CONTINUE * Values of INCX and INCY READ( NIN, FMT = * )NINC IF( NINC.LT.1.OR.NINC.GT.NINMAX )THEN WRITE( NOUT, FMT = 9997 )'INCX AND INCY', NINMAX GO TO 230 END IF READ( NIN, FMT = * )( INC( I ), I = 1, NINC ) DO 30 I = 1, NINC IF( INC( I ).EQ.0.OR.ABS( INC( I ) ).GT.INCMAX )THEN WRITE( NOUT, FMT = 9994 )INCMAX GO TO 230 END IF 30 CONTINUE * Values of ALPHA READ( NIN, FMT = * )NALF IF( NALF.LT.1.OR.NALF.GT.NALMAX )THEN WRITE( NOUT, FMT = 9997 )'ALPHA', NALMAX GO TO 230 END IF READ( NIN, FMT = * )( ALF( I ), I = 1, NALF ) * Values of BETA READ( NIN, FMT = * )NBET IF( NBET.LT.1.OR.NBET.GT.NBEMAX )THEN WRITE( NOUT, FMT = 9997 )'BETA', NBEMAX GO TO 230 END IF READ( NIN, FMT = * )( BET( I ), I = 1, NBET ) * * Report values of parameters. * WRITE( NOUT, FMT = 9993 ) WRITE( NOUT, FMT = 9992 )( IDIM( I ), I = 1, NIDIM ) WRITE( NOUT, FMT = 9991 )( KB( I ), I = 1, NKB ) WRITE( NOUT, FMT = 9990 )( INC( I ), I = 1, NINC ) WRITE( NOUT, FMT = 9989 )( ALF( I ), I = 1, NALF ) WRITE( NOUT, FMT = 9988 )( BET( I ), I = 1, NBET ) IF( .NOT.TSTERR )THEN WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9980 ) END IF WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9999 )THRESH WRITE( NOUT, FMT = * ) * * Read names of subroutines and flags which indicate * whether they are to be tested. * DO 40 I = 1, NSUBS LTEST( I ) = .FALSE. 40 CONTINUE 50 READ( NIN, FMT = 9984, END = 80 )SNAMET, LTESTT DO 60 I = 1, NSUBS IF( SNAMET.EQ.SNAMES( I ) ) $ GO TO 70 60 CONTINUE WRITE( NOUT, FMT = 9986 )SNAMET STOP 70 LTEST( I ) = LTESTT GO TO 50 * 80 CONTINUE CLOSE ( NIN ) * * Compute EPS (the machine precision). * EPS = RONE 90 CONTINUE IF( SDIFF( RONE + EPS, RONE ).EQ.RZERO ) $ GO TO 100 EPS = RHALF*EPS GO TO 90 100 CONTINUE EPS = EPS + EPS WRITE( NOUT, FMT = 9998 )EPS * * Check the reliability of CMVCH using exact data. * N = MIN( 32, NMAX ) DO 120 J = 1, N DO 110 I = 1, N A( I, J ) = MAX( I - J + 1, 0 ) 110 CONTINUE X( J ) = J Y( J ) = ZERO 120 CONTINUE DO 130 J = 1, N YY( J ) = J*( ( J + 1 )*J )/2 - ( ( J + 1 )*J*( J - 1 ) )/3 130 CONTINUE * YY holds the exact result. On exit from CMVCH YT holds * the result computed by CMVCH. TRANS = 'N' CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, 1, ZERO, Y, 1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF TRANS = 'T' CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, -1, ZERO, Y, -1, YT, G, $ YY, EPS, ERR, FATAL, NOUT, .TRUE. ) SAME = LCE( YY, YT, N ) IF( .NOT.SAME.OR.ERR.NE.RZERO )THEN WRITE( NOUT, FMT = 9985 )TRANS, SAME, ERR STOP END IF * * Test each subroutine in turn. * DO 210 ISNUM = 1, NSUBS WRITE( NOUT, FMT = * ) IF( .NOT.LTEST( ISNUM ) )THEN * Subprogram is not to be tested. WRITE( NOUT, FMT = 9983 )SNAMES( ISNUM ) ELSE SRNAMT = SNAMES( ISNUM ) * Test error exits. IF( TSTERR )THEN CALL CCHKE( ISNUM, SNAMES( ISNUM ), NOUT ) WRITE( NOUT, FMT = * ) END IF * Test computations. INFOT = 0 OK = .TRUE. FATAL = .FALSE. GO TO ( 140, 140, 150, 150, 150, 160, 160, $ 160, 160, 160, 160, 170, 170, 180, $ 180, 190, 190 )ISNUM * Test CGEMV, 01, and CGBMV, 02. 140 CALL CCHK1( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test CHEMV, 03, CHBMV, 04, and CHPMV, 05. 150 CALL CCHK2( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, $ NBET, BET, NINC, INC, NMAX, INCMAX, A, AA, AS, $ X, XX, XS, Y, YY, YS, YT, G ) GO TO 200 * Test CTRMV, 06, CTBMV, 07, CTPMV, 08, * CTRSV, 09, CTBSV, 10, and CTPSV, 11. 160 CALL CCHK3( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, $ NMAX, INCMAX, A, AA, AS, Y, YY, YS, YT, G, Z ) GO TO 200 * Test CGERC, 12, CGERU, 13. 170 CALL CCHK4( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test CHER, 14, and CHPR, 15. 180 CALL CCHK5( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) GO TO 200 * Test CHER2, 16, and CHPR2, 17. 190 CALL CCHK6( SNAMES( ISNUM ), EPS, THRESH, NOUT, NTRA, TRACE, $ REWI, FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, $ NMAX, INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, $ YT, G, Z ) * 200 IF( FATAL.AND.SFATAL ) $ GO TO 220 END IF 210 CONTINUE WRITE( NOUT, FMT = 9982 ) GO TO 240 * 220 CONTINUE WRITE( NOUT, FMT = 9981 ) GO TO 240 * 230 CONTINUE WRITE( NOUT, FMT = 9987 ) * 240 CONTINUE IF( TRACE ) $ CLOSE ( NTRA ) CLOSE ( NOUT ) STOP * 9999 FORMAT( ' ROUTINES PASS COMPUTATIONAL TESTS IF TEST RATIO IS LES', $ 'S THAN', F8.2 ) 9998 FORMAT( ' RELATIVE MACHINE PRECISION IS TAKEN TO BE', 1P, E9.1 ) 9997 FORMAT( ' NUMBER OF VALUES OF ', A, ' IS LESS THAN 1 OR GREATER ', $ 'THAN ', I2 ) 9996 FORMAT( ' VALUE OF N IS LESS THAN 0 OR GREATER THAN ', I2 ) 9995 FORMAT( ' VALUE OF K IS LESS THAN 0' ) 9994 FORMAT( ' ABSOLUTE VALUE OF INCX OR INCY IS 0 OR GREATER THAN ', $ I2 ) 9993 FORMAT( ' TESTS OF THE COMPLEX LEVEL 2 BLAS', //' THE F', $ 'OLLOWING PARAMETER VALUES WILL BE USED:' ) 9992 FORMAT( ' FOR N ', 9I6 ) 9991 FORMAT( ' FOR K ', 7I6 ) 9990 FORMAT( ' FOR INCX AND INCY ', 7I6 ) 9989 FORMAT( ' FOR ALPHA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9988 FORMAT( ' FOR BETA ', $ 7( '(', F4.1, ',', F4.1, ') ', : ) ) 9987 FORMAT( ' AMEND DATA FILE OR INCREASE ARRAY SIZES IN PROGRAM', $ /' ******* TESTS ABANDONED *******' ) 9986 FORMAT( ' SUBPROGRAM NAME ', A6, ' NOT RECOGNIZED', /' ******* T', $ 'ESTS ABANDONED *******' ) 9985 FORMAT( ' ERROR IN CMVCH - IN-LINE DOT PRODUCTS ARE BEING EVALU', $ 'ATED WRONGLY.', /' CMVCH WAS CALLED WITH TRANS = ', A1, $ ' AND RETURNED SAME = ', L1, ' AND ERR = ', F12.3, '.', / $ ' THIS MAY BE DUE TO FAULTS IN THE ARITHMETIC OR THE COMPILER.' $ , /' ******* TESTS ABANDONED *******' ) 9984 FORMAT( A6, L2 ) 9983 FORMAT( 1X, A6, ' WAS NOT TESTED' ) 9982 FORMAT( /' END OF TESTS' ) 9981 FORMAT( /' ******* FATAL ERROR - TESTS ABANDONED *******' ) 9980 FORMAT( ' ERROR-EXITS WILL NOT BE TESTED' ) * * End of CBLAT2. * END SUBROUTINE CCHK1( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests CGEMV and CGBMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IB, IC, IKU, IM, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, KL, KLS, KU, KUS, LAA, LDA, $ LDAS, LX, LY, M, ML, MS, N, NARGS, NC, ND, NK, $ NL, NS LOGICAL BANDED, FULL, NULL, RESET, SAME, TRAN CHARACTER*1 TRANS, TRANSS CHARACTER*3 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGBMV, CGEMV, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'NTC'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' * Define the number of arguments. IF( FULL )THEN NARGS = 11 ELSE IF( BANDED )THEN NARGS = 13 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IKU = 1, NK IF( BANDED )THEN KU = KB( IKU ) KL = MAX( KU - 1, 0 ) ELSE KU = N - 1 KL = M - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = KL + KU + 1 ELSE LDA = M END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, AA, $ LDA, KL, KU, RESET, TRANSL ) * DO 90 IC = 1, 3 TRANS = ICH( IC: IC ) TRAN = TRANS.EQ.'T'.OR.TRANS.EQ.'C' * IF( TRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*NL * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, NL, X, 1, XX, $ ABS( INCX ), 0, NL - 1, RESET, TRANSL ) IF( NL.GT.1 )THEN X( NL/2 ) = ZERO XX( 1 + ABS( INCX )*( NL/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*ML * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, ML, Y, 1, $ YY, ABS( INCY ), 0, ML - 1, $ RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * TRANSS = TRANS MS = M NS = N KLS = KL KUS = KU ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ TRANS, M, N, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL CGEMV( TRANS, M, N, ALPHA, AA, $ LDA, XX, INCX, BETA, YY, $ INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ TRANS, M, N, KL, KU, ALPHA, LDA, $ INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CGBMV( TRANS, M, N, KL, KU, ALPHA, $ AA, LDA, XX, INCX, BETA, $ YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 130 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = TRANS.EQ.TRANSS ISAME( 2 ) = MS.EQ.M ISAME( 3 ) = NS.EQ.N IF( FULL )THEN ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LCE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LCE( YS, YY, LY ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 4 ) = KLS.EQ.KL ISAME( 5 ) = KUS.EQ.KU ISAME( 6 ) = ALS.EQ.ALPHA ISAME( 7 ) = LCE( AS, AA, LAA ) ISAME( 8 ) = LDAS.EQ.LDA ISAME( 9 ) = LCE( XS, XX, LX ) ISAME( 10 ) = INCXS.EQ.INCX ISAME( 11 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 12 ) = LCE( YS, YY, LY ) ELSE ISAME( 12 ) = LCERES( 'GE', ' ', 1, $ ML, YS, YY, $ ABS( INCY ) ) END IF ISAME( 13 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report * and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 130 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMVCH( TRANS, M, N, ALPHA, A, $ NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, $ FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 130 ELSE * Avoid repeating tests with M.le.0 or * N.le.0. GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 140 * 130 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, TRANS, M, N, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, TRANS, M, N, KL, KU, $ ALPHA, LDA, INCX, BETA, INCY END IF * 140 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 4( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK1. * END SUBROUTINE CCHK2( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NALF, ALF, NBET, $ BET, NINC, INC, NMAX, INCMAX, A, AA, AS, X, XX, $ XS, Y, YY, YS, YT, G ) * * Tests CHEMV, CHBMV and CHPMV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NBET, NIDIM, NINC, NKB, NMAX, $ NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), BET( NBET ), X( NMAX ), $ XS( NMAX*INCMAX ), XX( NMAX*INCMAX ), $ Y( NMAX ), YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX ALPHA, ALS, BETA, BLS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IB, IC, IK, IN, INCX, INCXS, INCY, $ INCYS, IX, IY, K, KS, LAA, LDA, LDAS, LX, LY, $ N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHBMV, CHEMV, CHPMV, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 10 ELSE IF( BANDED )THEN NARGS = 11 ELSE IF( PACKED )THEN NARGS = 9 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, AA, $ LDA, K, K, RESET, TRANSL ) * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * DO 60 IA = 1, NALF ALPHA = ALF( IA ) * DO 50 IB = 1, NBET BETA = BET( IB ) * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the * subroutine. * UPLOS = UPLO NS = N KS = K ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX BLS = BETA DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, N, ALPHA, LDA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CHEMV( UPLO, N, ALPHA, AA, LDA, XX, $ INCX, BETA, YY, INCY ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, N, K, ALPHA, LDA, INCX, BETA, $ INCY IF( REWI ) $ REWIND NTRA CALL CHBMV( UPLO, N, K, ALPHA, AA, LDA, $ XX, INCX, BETA, YY, INCY ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, N, ALPHA, INCX, BETA, INCY IF( REWI ) $ REWIND NTRA CALL CHPMV( UPLO, N, ALPHA, AA, XX, INCX, $ BETA, YY, INCY ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N IF( FULL )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( AS, AA, LAA ) ISAME( 5 ) = LDAS.EQ.LDA ISAME( 6 ) = LCE( XS, XX, LX ) ISAME( 7 ) = INCXS.EQ.INCX ISAME( 8 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 9 ) = LCE( YS, YY, LY ) ELSE ISAME( 9 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 10 ) = INCYS.EQ.INCY ELSE IF( BANDED )THEN ISAME( 3 ) = KS.EQ.K ISAME( 4 ) = ALS.EQ.ALPHA ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA ISAME( 7 ) = LCE( XS, XX, LX ) ISAME( 8 ) = INCXS.EQ.INCX ISAME( 9 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 10 ) = LCE( YS, YY, LY ) ELSE ISAME( 10 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 11 ) = INCYS.EQ.INCY ELSE IF( PACKED )THEN ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( AS, AA, LAA ) ISAME( 5 ) = LCE( XS, XX, LX ) ISAME( 6 ) = INCXS.EQ.INCX ISAME( 7 ) = BLS.EQ.BETA IF( NULL )THEN ISAME( 8 ) = LCE( YS, YY, LY ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, $ YS, YY, ABS( INCY ) ) END IF ISAME( 9 ) = INCYS.EQ.INCY END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result. * CALL CMVCH( 'N', N, N, ALPHA, A, NMAX, X, $ INCX, BETA, Y, INCY, YT, G, $ YY, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and * return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0 GO TO 110 END IF * 50 CONTINUE * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, LDA, INCX, $ BETA, INCY ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, K, ALPHA, LDA, $ INCX, BETA, INCY ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, N, ALPHA, INCX, $ BETA, INCY END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), AP, X,', I2, ',(', F4.1, ',', F4.1, '), Y,', I2, $ ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', 2( I3, ',' ), '(', $ F4.1, ',', F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', $ F4.1, '), Y,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), A,', I3, ', X,', I2, ',(', F4.1, ',', F4.1, '), ', $ 'Y,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK2. * END SUBROUTINE CCHK3( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NKB, KB, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, XT, G, Z ) * * Tests CTRMV, CTBMV, CTPMV, CTRSV, CTBSV and CTPSV. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NIDIM, NINC, NKB, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XT( NMAX ), XX( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ), KB( NKB ) * .. Local Scalars .. COMPLEX TRANSL REAL ERR, ERRMAX INTEGER I, ICD, ICT, ICU, IK, IN, INCX, INCXS, IX, K, $ KS, LAA, LDA, LDAS, LX, N, NARGS, NC, NK, NS LOGICAL BANDED, FULL, NULL, PACKED, RESET, SAME CHARACTER*1 DIAG, DIAGS, TRANS, TRANSS, UPLO, UPLOS CHARACTER*2 ICHD, ICHU CHARACTER*3 ICHT * .. Local Arrays .. LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CMAKE, CMVCH, CTBMV, CTBSV, CTPMV, CTPSV, $ CTRMV, CTRSV * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICHU/'UL'/, ICHT/'NTC'/, ICHD/'UN'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'R' BANDED = SNAME( 3: 3 ).EQ.'B' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 8 ELSE IF( BANDED )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 7 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * Set up zero vector for CMVCH. DO 10 I = 1, NMAX Z( I ) = ZERO 10 CONTINUE * DO 110 IN = 1, NIDIM N = IDIM( IN ) * IF( BANDED )THEN NK = NKB ELSE NK = 1 END IF DO 100 IK = 1, NK IF( BANDED )THEN K = KB( IK ) ELSE K = N - 1 END IF * Set LDA to 1 more than minimum value if room. IF( BANDED )THEN LDA = K + 1 ELSE LDA = N END IF IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF NULL = N.LE.0 * DO 90 ICU = 1, 2 UPLO = ICHU( ICU: ICU ) * DO 80 ICT = 1, 3 TRANS = ICHT( ICT: ICT ) * DO 70 ICD = 1, 2 DIAG = ICHD( ICD: ICD ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, DIAG, N, N, A, $ NMAX, AA, LDA, K, K, RESET, TRANSL ) * DO 60 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, $ ABS( INCX ), 0, N - 1, RESET, $ TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO TRANSS = TRANS DIAGS = DIAG NS = N KS = K DO 20 I = 1, LAA AS( I ) = AA( I ) 20 CONTINUE LDAS = LDA DO 30 I = 1, LX XS( I ) = XX( I ) 30 CONTINUE INCXS = INCX * * Call the subroutine. * IF( SNAME( 4: 5 ).EQ.'MV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTRMV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTBMV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL CTPMV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, $ UPLO, TRANS, DIAG, N, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTRSV( UPLO, TRANS, DIAG, N, AA, LDA, $ XX, INCX ) ELSE IF( BANDED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, $ UPLO, TRANS, DIAG, N, K, LDA, INCX IF( REWI ) $ REWIND NTRA CALL CTBSV( UPLO, TRANS, DIAG, N, K, AA, $ LDA, XX, INCX ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9995 )NC, SNAME, $ UPLO, TRANS, DIAG, N, INCX IF( REWI ) $ REWIND NTRA CALL CTPSV( UPLO, TRANS, DIAG, N, AA, XX, $ INCX ) END IF END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = TRANS.EQ.TRANSS ISAME( 3 ) = DIAG.EQ.DIAGS ISAME( 4 ) = NS.EQ.N IF( FULL )THEN ISAME( 5 ) = LCE( AS, AA, LAA ) ISAME( 6 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 7 ) = LCE( XS, XX, LX ) ELSE ISAME( 7 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 8 ) = INCXS.EQ.INCX ELSE IF( BANDED )THEN ISAME( 5 ) = KS.EQ.K ISAME( 6 ) = LCE( AS, AA, LAA ) ISAME( 7 ) = LDAS.EQ.LDA IF( NULL )THEN ISAME( 8 ) = LCE( XS, XX, LX ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 9 ) = INCXS.EQ.INCX ELSE IF( PACKED )THEN ISAME( 5 ) = LCE( AS, AA, LAA ) IF( NULL )THEN ISAME( 6 ) = LCE( XS, XX, LX ) ELSE ISAME( 6 ) = LCERES( 'GE', ' ', 1, N, XS, $ XX, ABS( INCX ) ) END IF ISAME( 7 ) = INCXS.EQ.INCX END IF * * If data was incorrectly changed, report and * return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN IF( SNAME( 4: 5 ).EQ.'MV' )THEN * * Check the result. * CALL CMVCH( TRANS, N, N, ONE, A, NMAX, X, $ INCX, ZERO, Z, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .TRUE. ) ELSE IF( SNAME( 4: 5 ).EQ.'SV' )THEN * * Compute approximation to original vector. * DO 50 I = 1, N Z( I ) = XX( 1 + ( I - 1 )* $ ABS( INCX ) ) XX( 1 + ( I - 1 )*ABS( INCX ) ) $ = X( I ) 50 CONTINUE CALL CMVCH( TRANS, N, N, ONE, A, NMAX, Z, $ INCX, ZERO, X, INCX, XT, G, $ XX, EPS, ERR, FATAL, NOUT, $ .FALSE. ) END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 120 ELSE * Avoid repeating tests with N.le.0. GO TO 110 END IF * 60 CONTINUE * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, TRANS, DIAG, N, LDA, $ INCX ELSE IF( BANDED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, TRANS, DIAG, N, K, $ LDA, INCX ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9995 )NC, SNAME, UPLO, TRANS, DIAG, N, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', AP, ', $ 'X,', I2, ') .' ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), 2( I3, ',' ), $ ' A,', I3, ', X,', I2, ') .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(', 3( '''', A1, ''',' ), I3, ', A,', $ I3, ', X,', I2, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK3. * END SUBROUTINE CCHK4( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CGERC and CGERU. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, ALS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IM, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, LAA, LDA, LDAS, LX, LY, M, MS, N, NARGS, $ NC, ND, NS LOGICAL CONJ, NULL, RESET, SAME * .. Local Arrays .. COMPLEX W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CGERC, CGERU, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, MIN * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. CONJ = SNAME( 5: 5 ).EQ.'C' * Define the number of arguments. NARGS = 9 * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 120 IN = 1, NIDIM N = IDIM( IN ) ND = N/2 + 1 * DO 110 IM = 1, 2 IF( IM.EQ.1 ) $ M = MAX( N - ND, 0 ) IF( IM.EQ.2 ) $ M = MIN( N + ND, NMAX ) * * Set LDA to 1 more than minimum value if room. LDA = M IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 110 LAA = LDA*N NULL = N.LE.0.OR.M.LE.0 * DO 100 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*M * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, M, X, 1, XX, ABS( INCX ), $ 0, M - 1, RESET, TRANSL ) IF( M.GT.1 )THEN X( M/2 ) = ZERO XX( 1 + ABS( INCX )*( M/2 - 1 ) ) = ZERO END IF * DO 90 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 80 IA = 1, NALF ALPHA = ALF( IA ) * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), ' ', ' ', M, N, A, NMAX, $ AA, LDA, M - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * MS = M NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, M, N, $ ALPHA, INCX, INCY, LDA IF( CONJ )THEN IF( REWI ) $ REWIND NTRA CALL CGERC( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) ELSE IF( REWI ) $ REWIND NTRA CALL CGERU( M, N, ALPHA, XX, INCX, YY, INCY, AA, $ LDA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9993 ) FATAL = .TRUE. GO TO 140 END IF * * See what data changed inside subroutine. * ISAME( 1 ) = MS.EQ.M ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LCE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LCE( AS, AA, LAA ) ELSE ISAME( 8 ) = LCERES( 'GE', ' ', M, N, AS, AA, $ LDA ) END IF ISAME( 9 ) = LDAS.EQ.LDA * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 140 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, M Z( I ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, M Z( I ) = X( M - I + 1 ) 60 CONTINUE END IF DO 70 J = 1, N IF( INCY.GT.0 )THEN W( 1 ) = Y( J ) ELSE W( 1 ) = Y( N - J + 1 ) END IF IF( CONJ ) $ W( 1 ) = CONJG( W( 1 ) ) CALL CMVCH( 'N', M, 1, ALPHA, Z, NMAX, W, 1, $ ONE, A( 1, J ), 1, YT, G, $ AA( 1 + ( J - 1 )*LDA ), EPS, $ ERR, FATAL, NOUT, .TRUE. ) ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 130 70 CONTINUE ELSE * Avoid repeating tests with M.le.0 or N.le.0. GO TO 110 END IF * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 150 * 130 CONTINUE WRITE( NOUT, FMT = 9995 )J * 140 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME WRITE( NOUT, FMT = 9994 )NC, SNAME, M, N, ALPHA, INCX, INCY, LDA * 150 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(', 2( I3, ',' ), '(', F4.1, ',', F4.1, $ '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9993 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK4. * END SUBROUTINE CCHK5( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CHER and CHPR. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, TRANSL REAL ERR, ERRMAX, RALPHA, RALS INTEGER I, IA, IC, IN, INCX, INCXS, IX, J, JA, JJ, LAA, $ LDA, LDAS, LJ, LX, N, NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX W( 1 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER, CHPR, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, CONJG, MAX, REAL * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 7 ELSE IF( PACKED )THEN NARGS = 6 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 100 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 100 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 90 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 80 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 70 IA = 1, NALF RALPHA = REAL( ALF( IA ) ) ALPHA = CMPLX( RALPHA, RZERO ) NULL = N.LE.0.OR.RALPHA.EQ.RZERO * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, NMAX, $ AA, LDA, N - 1, N - 1, RESET, TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N RALS = RALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ RALPHA, INCX, LDA IF( REWI ) $ REWIND NTRA CALL CHER( UPLO, N, RALPHA, XX, INCX, AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ RALPHA, INCX IF( REWI ) $ REWIND NTRA CALL CHPR( UPLO, N, RALPHA, XX, INCX, AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 120 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = RALS.EQ.RALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX IF( NULL )THEN ISAME( 6 ) = LCE( AS, AA, LAA ) ELSE ISAME( 6 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, AS, $ AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 7 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 30 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 30 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 120 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 40 I = 1, N Z( I ) = X( I ) 40 CONTINUE ELSE DO 50 I = 1, N Z( I ) = X( N - I + 1 ) 50 CONTINUE END IF JA = 1 DO 60 J = 1, N W( 1 ) = CONJG( Z( J ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL CMVCH( 'N', LJ, 1, ALPHA, Z( JJ ), LJ, W, $ 1, ONE, A( JJ, J ), 1, YT, G, $ AA( JA ), EPS, ERR, FATAL, NOUT, $ .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 110 60 CONTINUE ELSE * Avoid repeating tests if N.le.0. IF( N.LE.0 ) $ GO TO 100 END IF * 70 CONTINUE * 80 CONTINUE * 90 CONTINUE * 100 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 130 * 110 CONTINUE WRITE( NOUT, FMT = 9995 )J * 120 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, RALPHA, INCX, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, RALPHA, INCX END IF * 130 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', AP) .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',', F4.1, ', X,', $ I2, ', A,', I3, ') .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK5. * END SUBROUTINE CCHK6( SNAME, EPS, THRESH, NOUT, NTRA, TRACE, REWI, $ FATAL, NIDIM, IDIM, NALF, ALF, NINC, INC, NMAX, $ INCMAX, A, AA, AS, X, XX, XS, Y, YY, YS, YT, G, $ Z ) * * Tests CHER2 and CHPR2. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, HALF, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), HALF = ( 0.5, 0.0 ), $ ONE = ( 1.0, 0.0 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) * .. Scalar Arguments .. REAL EPS, THRESH INTEGER INCMAX, NALF, NIDIM, NINC, NMAX, NOUT, NTRA LOGICAL FATAL, REWI, TRACE CHARACTER*6 SNAME * .. Array Arguments .. COMPLEX A( NMAX, NMAX ), AA( NMAX*NMAX ), ALF( NALF ), $ AS( NMAX*NMAX ), X( NMAX ), XS( NMAX*INCMAX ), $ XX( NMAX*INCMAX ), Y( NMAX ), $ YS( NMAX*INCMAX ), YT( NMAX ), $ YY( NMAX*INCMAX ), Z( NMAX, 2 ) REAL G( NMAX ) INTEGER IDIM( NIDIM ), INC( NINC ) * .. Local Scalars .. COMPLEX ALPHA, ALS, TRANSL REAL ERR, ERRMAX INTEGER I, IA, IC, IN, INCX, INCXS, INCY, INCYS, IX, $ IY, J, JA, JJ, LAA, LDA, LDAS, LJ, LX, LY, N, $ NARGS, NC, NS LOGICAL FULL, NULL, PACKED, RESET, SAME, UPPER CHARACTER*1 UPLO, UPLOS CHARACTER*2 ICH * .. Local Arrays .. COMPLEX W( 2 ) LOGICAL ISAME( 13 ) * .. External Functions .. LOGICAL LCE, LCERES EXTERNAL LCE, LCERES * .. External Subroutines .. EXTERNAL CHER2, CHPR2, CMAKE, CMVCH * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Data statements .. DATA ICH/'UL'/ * .. Executable Statements .. FULL = SNAME( 3: 3 ).EQ.'E' PACKED = SNAME( 3: 3 ).EQ.'P' * Define the number of arguments. IF( FULL )THEN NARGS = 9 ELSE IF( PACKED )THEN NARGS = 8 END IF * NC = 0 RESET = .TRUE. ERRMAX = RZERO * DO 140 IN = 1, NIDIM N = IDIM( IN ) * Set LDA to 1 more than minimum value if room. LDA = N IF( LDA.LT.NMAX ) $ LDA = LDA + 1 * Skip tests if not enough room. IF( LDA.GT.NMAX ) $ GO TO 140 IF( PACKED )THEN LAA = ( N*( N + 1 ) )/2 ELSE LAA = LDA*N END IF * DO 130 IC = 1, 2 UPLO = ICH( IC: IC ) UPPER = UPLO.EQ.'U' * DO 120 IX = 1, NINC INCX = INC( IX ) LX = ABS( INCX )*N * * Generate the vector X. * TRANSL = HALF CALL CMAKE( 'GE', ' ', ' ', 1, N, X, 1, XX, ABS( INCX ), $ 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN X( N/2 ) = ZERO XX( 1 + ABS( INCX )*( N/2 - 1 ) ) = ZERO END IF * DO 110 IY = 1, NINC INCY = INC( IY ) LY = ABS( INCY )*N * * Generate the vector Y. * TRANSL = ZERO CALL CMAKE( 'GE', ' ', ' ', 1, N, Y, 1, YY, $ ABS( INCY ), 0, N - 1, RESET, TRANSL ) IF( N.GT.1 )THEN Y( N/2 ) = ZERO YY( 1 + ABS( INCY )*( N/2 - 1 ) ) = ZERO END IF * DO 100 IA = 1, NALF ALPHA = ALF( IA ) NULL = N.LE.0.OR.ALPHA.EQ.ZERO * * Generate the matrix A. * TRANSL = ZERO CALL CMAKE( SNAME( 2: 3 ), UPLO, ' ', N, N, A, $ NMAX, AA, LDA, N - 1, N - 1, RESET, $ TRANSL ) * NC = NC + 1 * * Save every datum before calling the subroutine. * UPLOS = UPLO NS = N ALS = ALPHA DO 10 I = 1, LAA AS( I ) = AA( I ) 10 CONTINUE LDAS = LDA DO 20 I = 1, LX XS( I ) = XX( I ) 20 CONTINUE INCXS = INCX DO 30 I = 1, LY YS( I ) = YY( I ) 30 CONTINUE INCYS = INCY * * Call the subroutine. * IF( FULL )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9993 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY, LDA IF( REWI ) $ REWIND NTRA CALL CHER2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA, LDA ) ELSE IF( PACKED )THEN IF( TRACE ) $ WRITE( NTRA, FMT = 9994 )NC, SNAME, UPLO, N, $ ALPHA, INCX, INCY IF( REWI ) $ REWIND NTRA CALL CHPR2( UPLO, N, ALPHA, XX, INCX, YY, INCY, $ AA ) END IF * * Check if error-exit was taken incorrectly. * IF( .NOT.OK )THEN WRITE( NOUT, FMT = 9992 ) FATAL = .TRUE. GO TO 160 END IF * * See what data changed inside subroutines. * ISAME( 1 ) = UPLO.EQ.UPLOS ISAME( 2 ) = NS.EQ.N ISAME( 3 ) = ALS.EQ.ALPHA ISAME( 4 ) = LCE( XS, XX, LX ) ISAME( 5 ) = INCXS.EQ.INCX ISAME( 6 ) = LCE( YS, YY, LY ) ISAME( 7 ) = INCYS.EQ.INCY IF( NULL )THEN ISAME( 8 ) = LCE( AS, AA, LAA ) ELSE ISAME( 8 ) = LCERES( SNAME( 2: 3 ), UPLO, N, N, $ AS, AA, LDA ) END IF IF( .NOT.PACKED )THEN ISAME( 9 ) = LDAS.EQ.LDA END IF * * If data was incorrectly changed, report and return. * SAME = .TRUE. DO 40 I = 1, NARGS SAME = SAME.AND.ISAME( I ) IF( .NOT.ISAME( I ) ) $ WRITE( NOUT, FMT = 9998 )I 40 CONTINUE IF( .NOT.SAME )THEN FATAL = .TRUE. GO TO 160 END IF * IF( .NOT.NULL )THEN * * Check the result column by column. * IF( INCX.GT.0 )THEN DO 50 I = 1, N Z( I, 1 ) = X( I ) 50 CONTINUE ELSE DO 60 I = 1, N Z( I, 1 ) = X( N - I + 1 ) 60 CONTINUE END IF IF( INCY.GT.0 )THEN DO 70 I = 1, N Z( I, 2 ) = Y( I ) 70 CONTINUE ELSE DO 80 I = 1, N Z( I, 2 ) = Y( N - I + 1 ) 80 CONTINUE END IF JA = 1 DO 90 J = 1, N W( 1 ) = ALPHA*CONJG( Z( J, 2 ) ) W( 2 ) = CONJG( ALPHA )*CONJG( Z( J, 1 ) ) IF( UPPER )THEN JJ = 1 LJ = J ELSE JJ = J LJ = N - J + 1 END IF CALL CMVCH( 'N', LJ, 2, ONE, Z( JJ, 1 ), $ NMAX, W, 1, ONE, A( JJ, J ), 1, $ YT, G, AA( JA ), EPS, ERR, FATAL, $ NOUT, .TRUE. ) IF( FULL )THEN IF( UPPER )THEN JA = JA + LDA ELSE JA = JA + LDA + 1 END IF ELSE JA = JA + LJ END IF ERRMAX = MAX( ERRMAX, ERR ) * If got really bad answer, report and return. IF( FATAL ) $ GO TO 150 90 CONTINUE ELSE * Avoid repeating tests with N.le.0. IF( N.LE.0 ) $ GO TO 140 END IF * 100 CONTINUE * 110 CONTINUE * 120 CONTINUE * 130 CONTINUE * 140 CONTINUE * * Report result. * IF( ERRMAX.LT.THRESH )THEN WRITE( NOUT, FMT = 9999 )SNAME, NC ELSE WRITE( NOUT, FMT = 9997 )SNAME, NC, ERRMAX END IF GO TO 170 * 150 CONTINUE WRITE( NOUT, FMT = 9995 )J * 160 CONTINUE WRITE( NOUT, FMT = 9996 )SNAME IF( FULL )THEN WRITE( NOUT, FMT = 9993 )NC, SNAME, UPLO, N, ALPHA, INCX, $ INCY, LDA ELSE IF( PACKED )THEN WRITE( NOUT, FMT = 9994 )NC, SNAME, UPLO, N, ALPHA, INCX, INCY END IF * 170 CONTINUE RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE COMPUTATIONAL TESTS (', I6, ' CALL', $ 'S)' ) 9998 FORMAT( ' ******* FATAL ERROR - PARAMETER NUMBER ', I2, ' WAS CH', $ 'ANGED INCORRECTLY *******' ) 9997 FORMAT( ' ', A6, ' COMPLETED THE COMPUTATIONAL TESTS (', I6, ' C', $ 'ALLS)', /' ******* BUT WITH MAXIMUM TEST RATIO', F8.2, $ ' - SUSPECT *******' ) 9996 FORMAT( ' ******* ', A6, ' FAILED ON CALL NUMBER:' ) 9995 FORMAT( ' THESE ARE THE RESULTS FOR COLUMN ', I3 ) 9994 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', AP) ', $ ' .' ) 9993 FORMAT( 1X, I6, ': ', A6, '(''', A1, ''',', I3, ',(', F4.1, ',', $ F4.1, '), X,', I2, ', Y,', I2, ', A,', I3, ') ', $ ' .' ) 9992 FORMAT( ' ******* FATAL ERROR - ERROR-EXIT TAKEN ON VALID CALL *', $ '******' ) * * End of CCHK6. * END SUBROUTINE CCHKE( ISNUM, SRNAMT, NOUT ) * * Tests the error exits from the Level 2 Blas. * Requires a special version of the error-handling routine XERBLA. * ALPHA, RALPHA, BETA, A, X and Y should not need to be defined. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER ISNUM, NOUT CHARACTER*6 SRNAMT * .. Scalars in Common .. INTEGER INFOT, NOUTC LOGICAL LERR, OK * .. Local Scalars .. COMPLEX ALPHA, BETA REAL RALPHA * .. Local Arrays .. COMPLEX A( 1, 1 ), X( 1 ), Y( 1 ) * .. External Subroutines .. EXTERNAL CGBMV, CGEMV, CGERC, CGERU, CHBMV, CHEMV, CHER, $ CHER2, CHKXER, CHPMV, CHPR, CHPR2, CTBMV, $ CTBSV, CTPMV, CTPSV, CTRMV, CTRSV * .. Common blocks .. COMMON /INFOC/INFOT, NOUTC, OK, LERR * .. Executable Statements .. * OK is set to .FALSE. by the special version of XERBLA or by CHKXER * if anything is wrong. OK = .TRUE. * LERR is set to .TRUE. by the special version of XERBLA each time * it is called, and is then tested and re-set by CHKXER. LERR = .FALSE. GO TO ( 10, 20, 30, 40, 50, 60, 70, 80, $ 90, 100, 110, 120, 130, 140, 150, 160, $ 170 )ISNUM 10 INFOT = 1 CALL CGEMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGEMV( 'N', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGEMV( 'N', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CGEMV( 'N', 2, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CGEMV( 'N', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 20 INFOT = 1 CALL CGBMV( '/', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGBMV( 'N', -1, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CGBMV( 'N', 0, -1, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CGBMV( 'N', 0, 0, -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGBMV( 'N', 2, 0, 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CGBMV( 'N', 0, 0, 1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 13 CALL CGBMV( 'N', 0, 0, 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 30 INFOT = 1 CALL CHEMV( '/', 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHEMV( 'U', -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHEMV( 'U', 2, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 10 CALL CHEMV( 'U', 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 40 INFOT = 1 CALL CHBMV( '/', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHBMV( 'U', -1, 0, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CHBMV( 'U', 0, -1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHBMV( 'U', 0, 1, ALPHA, A, 1, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 11 CALL CHBMV( 'U', 0, 0, ALPHA, A, 1, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 50 INFOT = 1 CALL CHPMV( '/', 0, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPMV( 'U', -1, ALPHA, A, X, 1, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CHPMV( 'U', 0, ALPHA, A, X, 0, BETA, Y, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHPMV( 'U', 0, ALPHA, A, X, 1, BETA, Y, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 60 INFOT = 1 CALL CTRMV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRMV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRMV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRMV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRMV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTRMV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 70 INFOT = 1 CALL CTBMV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBMV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBMV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBMV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBMV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTBMV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTBMV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 80 INFOT = 1 CALL CTPMV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPMV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPMV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPMV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTPMV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 90 INFOT = 1 CALL CTRSV( '/', 'N', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTRSV( 'U', '/', 'N', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTRSV( 'U', 'N', '/', 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTRSV( 'U', 'N', 'N', -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 6 CALL CTRSV( 'U', 'N', 'N', 2, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 8 CALL CTRSV( 'U', 'N', 'N', 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 100 INFOT = 1 CALL CTBSV( '/', 'N', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTBSV( 'U', '/', 'N', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTBSV( 'U', 'N', '/', 0, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTBSV( 'U', 'N', 'N', -1, 0, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CTBSV( 'U', 'N', 'N', 0, -1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTBSV( 'U', 'N', 'N', 0, 1, A, 1, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CTBSV( 'U', 'N', 'N', 0, 0, A, 1, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 110 INFOT = 1 CALL CTPSV( '/', 'N', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CTPSV( 'U', '/', 'N', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 3 CALL CTPSV( 'U', 'N', '/', 0, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 4 CALL CTPSV( 'U', 'N', 'N', -1, A, X, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CTPSV( 'U', 'N', 'N', 0, A, X, 0 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 120 INFOT = 1 CALL CGERC( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGERC( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGERC( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CGERC( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CGERC( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 130 INFOT = 1 CALL CGERU( -1, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CGERU( 0, -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CGERU( 0, 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CGERU( 0, 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CGERU( 2, 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 140 INFOT = 1 CALL CHER( '/', 0, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER( 'U', -1, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHER( 'U', 0, RALPHA, X, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER( 'U', 2, RALPHA, X, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 150 INFOT = 1 CALL CHPR( '/', 0, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPR( 'U', -1, RALPHA, X, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHPR( 'U', 0, RALPHA, X, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 160 INFOT = 1 CALL CHER2( '/', 0, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHER2( 'U', -1, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHER2( 'U', 0, ALPHA, X, 0, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHER2( 'U', 0, ALPHA, X, 1, Y, 0, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 9 CALL CHER2( 'U', 2, ALPHA, X, 1, Y, 1, A, 1 ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) GO TO 180 170 INFOT = 1 CALL CHPR2( '/', 0, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 2 CALL CHPR2( 'U', -1, ALPHA, X, 1, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 5 CALL CHPR2( 'U', 0, ALPHA, X, 0, Y, 1, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) INFOT = 7 CALL CHPR2( 'U', 0, ALPHA, X, 1, Y, 0, A ) CALL CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * 180 IF( OK )THEN WRITE( NOUT, FMT = 9999 )SRNAMT ELSE WRITE( NOUT, FMT = 9998 )SRNAMT END IF RETURN * 9999 FORMAT( ' ', A6, ' PASSED THE TESTS OF ERROR-EXITS' ) 9998 FORMAT( ' ******* ', A6, ' FAILED THE TESTS OF ERROR-EXITS *****', $ '**' ) * * End of CCHKE. * END SUBROUTINE CMAKE( TYPE, UPLO, DIAG, M, N, A, NMAX, AA, LDA, KL, $ KU, RESET, TRANSL ) * * Generates values for an M by N matrix A within the bandwidth * defined by KL and KU. * Stores the values in the array AA in the data structure required * by the routine, with unwanted elements set to rogue value. * * TYPE is 'GE', 'GB', 'HE', 'HB', 'HP', 'TR', 'TB' OR 'TP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0, 0.0 ), ONE = ( 1.0, 0.0 ) ) COMPLEX ROGUE PARAMETER ( ROGUE = ( -1.0E10, 1.0E10 ) ) REAL RZERO PARAMETER ( RZERO = 0.0 ) REAL RROGUE PARAMETER ( RROGUE = -1.0E10 ) * .. Scalar Arguments .. COMPLEX TRANSL INTEGER KL, KU, LDA, M, N, NMAX LOGICAL RESET CHARACTER*1 DIAG, UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX A( NMAX, * ), AA( * ) * .. Local Scalars .. INTEGER I, I1, I2, I3, IBEG, IEND, IOFF, J, JJ, KK LOGICAL GEN, LOWER, SYM, TRI, UNIT, UPPER * .. External Functions .. COMPLEX CBEG EXTERNAL CBEG * .. Intrinsic Functions .. INTRINSIC CMPLX, CONJG, MAX, MIN, REAL * .. Executable Statements .. GEN = TYPE( 1: 1 ).EQ.'G' SYM = TYPE( 1: 1 ).EQ.'H' TRI = TYPE( 1: 1 ).EQ.'T' UPPER = ( SYM.OR.TRI ).AND.UPLO.EQ.'U' LOWER = ( SYM.OR.TRI ).AND.UPLO.EQ.'L' UNIT = TRI.AND.DIAG.EQ.'U' * * Generate data in array A. * DO 20 J = 1, N DO 10 I = 1, M IF( GEN.OR.( UPPER.AND.I.LE.J ).OR.( LOWER.AND.I.GE.J ) ) $ THEN IF( ( I.LE.J.AND.J - I.LE.KU ).OR. $ ( I.GE.J.AND.I - J.LE.KL ) )THEN A( I, J ) = CBEG( RESET ) + TRANSL ELSE A( I, J ) = ZERO END IF IF( I.NE.J )THEN IF( SYM )THEN A( J, I ) = CONJG( A( I, J ) ) ELSE IF( TRI )THEN A( J, I ) = ZERO END IF END IF END IF 10 CONTINUE IF( SYM ) $ A( J, J ) = CMPLX( REAL( A( J, J ) ), RZERO ) IF( TRI ) $ A( J, J ) = A( J, J ) + ONE IF( UNIT ) $ A( J, J ) = ONE 20 CONTINUE * * Store elements in array AS in data structure required by routine. * IF( TYPE.EQ.'GE' )THEN DO 50 J = 1, N DO 30 I = 1, M AA( I + ( J - 1 )*LDA ) = A( I, J ) 30 CONTINUE DO 40 I = M + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 40 CONTINUE 50 CONTINUE ELSE IF( TYPE.EQ.'GB' )THEN DO 90 J = 1, N DO 60 I1 = 1, KU + 1 - J AA( I1 + ( J - 1 )*LDA ) = ROGUE 60 CONTINUE DO 70 I2 = I1, MIN( KL + KU + 1, KU + 1 + M - J ) AA( I2 + ( J - 1 )*LDA ) = A( I2 + J - KU - 1, J ) 70 CONTINUE DO 80 I3 = I2, LDA AA( I3 + ( J - 1 )*LDA ) = ROGUE 80 CONTINUE 90 CONTINUE ELSE IF( TYPE.EQ.'HE'.OR.TYPE.EQ.'TR' )THEN DO 130 J = 1, N IF( UPPER )THEN IBEG = 1 IF( UNIT )THEN IEND = J - 1 ELSE IEND = J END IF ELSE IF( UNIT )THEN IBEG = J + 1 ELSE IBEG = J END IF IEND = N END IF DO 100 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 100 CONTINUE DO 110 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I, J ) 110 CONTINUE DO 120 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 120 CONTINUE IF( SYM )THEN JJ = J + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 130 CONTINUE ELSE IF( TYPE.EQ.'HB'.OR.TYPE.EQ.'TB' )THEN DO 170 J = 1, N IF( UPPER )THEN KK = KL + 1 IBEG = MAX( 1, KL + 2 - J ) IF( UNIT )THEN IEND = KL ELSE IEND = KL + 1 END IF ELSE KK = 1 IF( UNIT )THEN IBEG = 2 ELSE IBEG = 1 END IF IEND = MIN( KL + 1, 1 + M - J ) END IF DO 140 I = 1, IBEG - 1 AA( I + ( J - 1 )*LDA ) = ROGUE 140 CONTINUE DO 150 I = IBEG, IEND AA( I + ( J - 1 )*LDA ) = A( I + J - KK, J ) 150 CONTINUE DO 160 I = IEND + 1, LDA AA( I + ( J - 1 )*LDA ) = ROGUE 160 CONTINUE IF( SYM )THEN JJ = KK + ( J - 1 )*LDA AA( JJ ) = CMPLX( REAL( AA( JJ ) ), RROGUE ) END IF 170 CONTINUE ELSE IF( TYPE.EQ.'HP'.OR.TYPE.EQ.'TP' )THEN IOFF = 0 DO 190 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 180 I = IBEG, IEND IOFF = IOFF + 1 AA( IOFF ) = A( I, J ) IF( I.EQ.J )THEN IF( UNIT ) $ AA( IOFF ) = ROGUE IF( SYM ) $ AA( IOFF ) = CMPLX( REAL( AA( IOFF ) ), RROGUE ) END IF 180 CONTINUE 190 CONTINUE END IF RETURN * * End of CMAKE. * END SUBROUTINE CMVCH( TRANS, M, N, ALPHA, A, NMAX, X, INCX, BETA, Y, $ INCY, YT, G, YY, EPS, ERR, FATAL, NOUT, MV ) * * Checks the results of the computational tests. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Parameters .. COMPLEX ZERO PARAMETER ( ZERO = ( 0.0, 0.0 ) ) REAL RZERO, RONE PARAMETER ( RZERO = 0.0, RONE = 1.0 ) * .. Scalar Arguments .. COMPLEX ALPHA, BETA REAL EPS, ERR INTEGER INCX, INCY, M, N, NMAX, NOUT LOGICAL FATAL, MV CHARACTER*1 TRANS * .. Array Arguments .. COMPLEX A( NMAX, * ), X( * ), Y( * ), YT( * ), YY( * ) REAL G( * ) * .. Local Scalars .. COMPLEX C REAL ERRI INTEGER I, INCXL, INCYL, IY, J, JX, KX, KY, ML, NL LOGICAL CTRAN, TRAN * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL, SQRT * .. Statement Functions .. REAL ABS1 * .. Statement Function definitions .. ABS1( C ) = ABS( REAL( C ) ) + ABS( AIMAG( C ) ) * .. Executable Statements .. TRAN = TRANS.EQ.'T' CTRAN = TRANS.EQ.'C' IF( TRAN.OR.CTRAN )THEN ML = N NL = M ELSE ML = M NL = N END IF IF( INCX.LT.0 )THEN KX = NL INCXL = -1 ELSE KX = 1 INCXL = 1 END IF IF( INCY.LT.0 )THEN KY = ML INCYL = -1 ELSE KY = 1 INCYL = 1 END IF * * Compute expected result in YT using data in A, X and Y. * Compute gauges in G. * IY = KY DO 40 I = 1, ML YT( IY ) = ZERO G( IY ) = RZERO JX = KX IF( TRAN )THEN DO 10 J = 1, NL YT( IY ) = YT( IY ) + A( J, I )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 10 CONTINUE ELSE IF( CTRAN )THEN DO 20 J = 1, NL YT( IY ) = YT( IY ) + CONJG( A( J, I ) )*X( JX ) G( IY ) = G( IY ) + ABS1( A( J, I ) )*ABS1( X( JX ) ) JX = JX + INCXL 20 CONTINUE ELSE DO 30 J = 1, NL YT( IY ) = YT( IY ) + A( I, J )*X( JX ) G( IY ) = G( IY ) + ABS1( A( I, J ) )*ABS1( X( JX ) ) JX = JX + INCXL 30 CONTINUE END IF YT( IY ) = ALPHA*YT( IY ) + BETA*Y( IY ) G( IY ) = ABS1( ALPHA )*G( IY ) + ABS1( BETA )*ABS1( Y( IY ) ) IY = IY + INCYL 40 CONTINUE * * Compute the error ratio for this result. * ERR = ZERO DO 50 I = 1, ML ERRI = ABS( YT( I ) - YY( 1 + ( I - 1 )*ABS( INCY ) ) )/EPS IF( G( I ).NE.RZERO ) $ ERRI = ERRI/G( I ) ERR = MAX( ERR, ERRI ) IF( ERR*SQRT( EPS ).GE.RONE ) $ GO TO 60 50 CONTINUE * If the loop completes, all results are at least half accurate. GO TO 80 * * Report fatal error. * 60 FATAL = .TRUE. WRITE( NOUT, FMT = 9999 ) DO 70 I = 1, ML IF( MV )THEN WRITE( NOUT, FMT = 9998 )I, YT( I ), $ YY( 1 + ( I - 1 )*ABS( INCY ) ) ELSE WRITE( NOUT, FMT = 9998 )I, $ YY( 1 + ( I - 1 )*ABS( INCY ) ), YT( I ) END IF 70 CONTINUE * 80 CONTINUE RETURN * 9999 FORMAT( ' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL', $ 'F ACCURATE *******', /' EXPECTED RE', $ 'SULT COMPUTED RESULT' ) 9998 FORMAT( 1X, I7, 2( ' (', G15.6, ',', G15.6, ')' ) ) * * End of CMVCH. * END LOGICAL FUNCTION LCE( RI, RJ, LR ) * * Tests if two arrays are identical. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LR * .. Array Arguments .. COMPLEX RI( * ), RJ( * ) * .. Local Scalars .. INTEGER I * .. Executable Statements .. DO 10 I = 1, LR IF( RI( I ).NE.RJ( I ) ) $ GO TO 20 10 CONTINUE LCE = .TRUE. GO TO 30 20 CONTINUE LCE = .FALSE. 30 RETURN * * End of LCE. * END LOGICAL FUNCTION LCERES( TYPE, UPLO, M, N, AA, AS, LDA ) * * Tests if selected elements in two arrays are equal. * * TYPE is 'GE', 'HE' or 'HP'. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER LDA, M, N CHARACTER*1 UPLO CHARACTER*2 TYPE * .. Array Arguments .. COMPLEX AA( LDA, * ), AS( LDA, * ) * .. Local Scalars .. INTEGER I, IBEG, IEND, J LOGICAL UPPER * .. Executable Statements .. UPPER = UPLO.EQ.'U' IF( TYPE.EQ.'GE' )THEN DO 20 J = 1, N DO 10 I = M + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 10 CONTINUE 20 CONTINUE ELSE IF( TYPE.EQ.'HE' )THEN DO 50 J = 1, N IF( UPPER )THEN IBEG = 1 IEND = J ELSE IBEG = J IEND = N END IF DO 30 I = 1, IBEG - 1 IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 30 CONTINUE DO 40 I = IEND + 1, LDA IF( AA( I, J ).NE.AS( I, J ) ) $ GO TO 70 40 CONTINUE 50 CONTINUE END IF * 60 CONTINUE LCERES = .TRUE. GO TO 80 70 CONTINUE LCERES = .FALSE. 80 RETURN * * End of LCERES. * END COMPLEX FUNCTION CBEG( RESET ) * * Generates complex numbers as pairs of random numbers uniformly * distributed between -0.5 and 0.5. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. LOGICAL RESET * .. Local Scalars .. INTEGER I, IC, J, MI, MJ * .. Save statement .. SAVE I, IC, J, MI, MJ * .. Intrinsic Functions .. INTRINSIC CMPLX * .. Executable Statements .. IF( RESET )THEN * Initialize local variables. MI = 891 MJ = 457 I = 7 J = 7 IC = 0 RESET = .FALSE. END IF * * The sequence of values of I or J is bounded between 1 and 999. * If initial I or J = 1,2,3,6,7 or 9, the period will be 50. * If initial I or J = 4 or 8, the period will be 25. * If initial I or J = 5, the period will be 10. * IC is used to break up the period by skipping 1 value of I or J * in 6. * IC = IC + 1 10 I = I*MI J = J*MJ I = I - 1000*( I/1000 ) J = J - 1000*( J/1000 ) IF( IC.GE.5 )THEN IC = 0 GO TO 10 END IF CBEG = CMPLX( ( I - 500 )/1001.0, ( J - 500 )/1001.0 ) RETURN * * End of CBEG. * END REAL FUNCTION SDIFF( X, Y ) * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * * .. Scalar Arguments .. REAL X, Y * .. Executable Statements .. SDIFF = X - Y RETURN * * End of SDIFF. * END SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) * * Tests whether XERBLA has detected an error when it should. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Executable Statements .. IF( .NOT.LERR )THEN WRITE( NOUT, FMT = 9999 )INFOT, SRNAMT OK = .FALSE. END IF LERR = .FALSE. RETURN * 9999 FORMAT( ' ***** ILLEGAL VALUE OF PARAMETER NUMBER ', I2, ' NOT D', $ 'ETECTED BY ', A6, ' *****' ) * * End of CHKXER. * END SUBROUTINE XERBLA( SRNAME, INFO ) * * This is a special version of XERBLA to be used only as part of * the test program for testing error exits from the Level 2 BLAS * routines. * * XERBLA is an error handler for the Level 2 BLAS routines. * * It is called by the Level 2 BLAS routines if an input parameter is * invalid. * * Auxiliary routine for test program for Level 2 Blas. * * -- Written on 10-August-1987. * Richard Hanson, Sandia National Labs. * Jeremy Du Croz, NAG Central Office. * * .. Scalar Arguments .. INTEGER INFO CHARACTER*6 SRNAME * .. Scalars in Common .. INTEGER INFOT, NOUT LOGICAL LERR, OK CHARACTER*6 SRNAMT * .. Common blocks .. COMMON /INFOC/INFOT, NOUT, OK, LERR COMMON /SRNAMC/SRNAMT * .. Executable Statements .. LERR = .TRUE. IF( INFO.NE.INFOT )THEN IF( INFOT.NE.0 )THEN WRITE( NOUT, FMT = 9999 )INFO, INFOT ELSE WRITE( NOUT, FMT = 9997 )INFO END IF OK = .FALSE. END IF IF( SRNAME.NE.SRNAMT )THEN WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT OK = .FALSE. END IF RETURN * 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD', $ ' OF ', I2, ' *******' ) 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE', $ 'AD OF ', A6, ' *******' ) 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, $ ' *******' ) * * End of XERBLA * END
|