|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void diagonal(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows(); Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols);
//check diagonal()
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); m2.diagonal() = 2 * m1.diagonal(); m2.diagonal()[0] *= 3;
if (rows>2) { enum { N1 = MatrixType::RowsAtCompileTime>1 ? 1 : 0, N2 = MatrixType::RowsAtCompileTime>2 ? -2 : 0 };
// check sub/super diagonal
if(m1.template diagonal<N1>().RowsAtCompileTime!=Dynamic) { VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size()); } if(m1.template diagonal<N2>().RowsAtCompileTime!=Dynamic) { VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size()); }
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>(); VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1)); m2.template diagonal<N1>()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>(); m2.template diagonal<N2>()[0] *= 3; VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
m2.diagonal(N1) = 2 * m1.diagonal(N1); VERIFY_IS_APPROX(m2.diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1)); m2.diagonal(N1)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
m2.diagonal(N2) = 2 * m1.diagonal(N2); VERIFY_IS_APPROX(m2.diagonal<N2>(), static_cast<Scalar>(2) * m1.diagonal(N2)); m2.diagonal(N2)[0] *= 3; VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]); } }
void test_diagonal() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) ); CALL_SUBTEST_1( diagonal(Matrix<float, 4, 9>()) ); CALL_SUBTEST_1( diagonal(Matrix<float, 7, 3>()) ); CALL_SUBTEST_2( diagonal(Matrix4d()) ); CALL_SUBTEST_2( diagonal(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( diagonal(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_2( diagonal(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_1( diagonal(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) ); } }
|