|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
static long g_realloc_count = 0; #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
#include "sparse.h"
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef Matrix<StorageIndex,2,1> Vector2; const Index rows = ref.rows(); const Index cols = ref.cols(); const Index inner = ref.innerSize(); const Index outer = ref.outerSize();
typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags };
double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6;
Scalar s1 = internal::random<Scalar>(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows);
std::vector<Vector2> zeroCoords; std::vector<Vector2> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
// test coeff and coeffRef
for (std::size_t i=0; i<zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat);
if(!nonzeroCoords.empty()) { m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); }
VERIFY_IS_APPROX(m, refMat);
// test assertion
VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); }
// test insert (inner random)
{ DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); bool call_reserve = internal::random<int>()%2; Index nnz = internal::random<int>(1,int(rows)/2); if(call_reserve) { if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); else m2.reserve(m2.outerSize() * nnz); } g_realloc_count = 0; for (Index j=0; j<cols; ++j) { for (Index k=0; k<nnz; ++k) { Index i = internal::random<Index>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } } if(call_reserve && !SparseMatrixType::IsRowMajor) { VERIFY(g_realloc_count==0); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); }
// test insert (fully random)
{ DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); if(internal::random<int>()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); for (int k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); else { Scalar v = internal::random<Scalar>(); m2.coeffRef(i,j) += v; m1(i,j) += v; } } VERIFY_IS_APPROX(m2,m1); } // test insert (un-compressed)
for(int mode=0;mode<4;++mode) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); m2.reserve(r); for (Index k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); if(mode==3) m2.reserve(r); } if(internal::random<int>()%2) m2.makeCompressed(); VERIFY_IS_APPROX(m2,m1); }
// test basic computations
{ DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); SparseMatrixType m1(rows, cols); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); SparseMatrixType m4(rows, cols); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4);
VERIFY_IS_APPROX(m1*s1, refM1*s1); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); else VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); DenseVector rv = DenseVector::Random(m1.cols()); DenseVector cv = DenseVector::Random(m1.rows()); Index r = internal::random<Index>(0,m1.rows()-2); Index c = internal::random<Index>(0,m1.cols()-1); VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); VERIFY_IS_APPROX(m1.real(), refM1.real());
refM4.setRandom(); // sparse cwise* dense
VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // dense cwise* sparse
VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
// test aliasing
VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); }
// test transpose
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); // check isApprox handles opposite storage order
typename Transpose<SparseMatrixType>::PlainObject m3(m2); VERIFY(m2.isApprox(m3)); }
// test prune
{ SparseMatrixType m2(rows, cols); DenseMatrix refM2(rows, cols); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); for (Index j=0; j<m2.cols(); ++j) { for (Index i=0; i<m2.rows(); ++i) { float x = internal::random<float>(0,1); if (x<0.1) { // do nothing
} else if (x<0.5) { countFalseNonZero++; m2.insert(i,j) = Scalar(0); } else { countTrueNonZero++; m2.insert(i,j) = Scalar(1); refM2(i,j) = Scalar(1); } } } if(internal::random<bool>()) m2.makeCompressed(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); if(countTrueNonZero>0) VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); }
// test setFromTriplets
{ typedef Triplet<Scalar,StorageIndex> TripletType; std::vector<TripletType> triplets; Index ntriplets = rows*cols; triplets.reserve(ntriplets); DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
for(Index i=0;i<ntriplets;++i) { StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); Scalar v = internal::random<Scalar>(); triplets.push_back(TripletType(r,c,v)); refMat_sum(r,c) += v; if(std::abs(refMat_prod(r,c))==0) refMat_prod(r,c) = v; else refMat_prod(r,c) *= v; refMat_last(r,c) = v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY_IS_APPROX(m, refMat_sum);
m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); VERIFY_IS_APPROX(m, refMat_prod); #if (defined(__cplusplus) && __cplusplus >= 201103L)
m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); VERIFY_IS_APPROX(m, refMat_last); #endif
} // test Map
{ DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); initSparse<Scalar>(density, refMat3, m3); { Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } { MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } }
// test triangularView
{ DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template triangularView<Lower>(); m3 = m2.template triangularView<Lower>(); VERIFY_IS_APPROX(m3, refMat3);
refMat3 = refMat2.template triangularView<Upper>(); m3 = m2.template triangularView<Upper>(); VERIFY_IS_APPROX(m3, refMat3);
if(inner>=outer) // FIXME this should be implemented for outer>inner as well
{ refMat3 = refMat2.template triangularView<UnitUpper>(); m3 = m2.template triangularView<UnitUpper>(); VERIFY_IS_APPROX(m3, refMat3);
refMat3 = refMat2.template triangularView<UnitLower>(); m3 = m2.template triangularView<UnitLower>(); VERIFY_IS_APPROX(m3, refMat3); }
refMat3 = refMat2.template triangularView<StrictlyUpper>(); m3 = m2.template triangularView<StrictlyUpper>(); VERIFY_IS_APPROX(m3, refMat3);
refMat3 = refMat2.template triangularView<StrictlyLower>(); m3 = m2.template triangularView<StrictlyLower>(); VERIFY_IS_APPROX(m3, refMat3);
// check sparse-traingular to dense
refMat3 = m2.template triangularView<StrictlyUpper>(); VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); } // test selfadjointView
if(!SparseMatrixType::IsRowMajor) { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template selfadjointView<Lower>(); m3 = m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3);
// selfadjointView only works for square matrices:
SparseMatrixType m4(rows, rows+1); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); } // test sparseView
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); }
// test diagonal
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); m2.diagonal() += refMat2.diagonal(); refMat2.diagonal() += refMat2.diagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test diagonal to sparse
{ DenseVector d = DenseVector::Random(rows); DenseMatrix refMat2 = d.asDiagonal(); SparseMatrixType m2(rows, rows); m2 = d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(d.asDiagonal()); VERIFY_IS_APPROX(m3, refMat2); refMat2 += d.asDiagonal(); m2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test conservative resize
{ std::vector< std::pair<StorageIndex,StorageIndex> > inc; if(rows > 3 && cols > 2) inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); for(size_t i = 0; i< inc.size(); i++) { StorageIndex incRows = inc[i].first; StorageIndex incCols = inc[i].second; SparseMatrixType m1(rows, cols); DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); initSparse<Scalar>(density, refMat1, m1); m1.conservativeResize(rows+incRows, cols+incCols); refMat1.conservativeResize(rows+incRows, cols+incCols); if (incRows > 0) refMat1.bottomRows(incRows).setZero(); if (incCols > 0) refMat1.rightCols(incCols).setZero(); VERIFY_IS_APPROX(m1, refMat1); // Insert new values
if (incRows > 0) m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; if (incCols > 0) m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; VERIFY_IS_APPROX(m1, refMat1); } }
// test Identity matrix
{ DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); SparseMatrixType m1(rows, rows); m1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); for(int k=0; k<rows*rows/4; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,rows-1); Scalar v = internal::random<Scalar>(); m1.coeffRef(i,j) = v; refMat1.coeffRef(i,j) = v; VERIFY_IS_APPROX(m1, refMat1); if(internal::random<Index>(0,10)<2) m1.makeCompressed(); } m1.setIdentity(); refMat1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); } }
template<typename SparseMatrixType> void big_sparse_triplet(Index rows, Index cols, double density) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef typename SparseMatrixType::Scalar Scalar; typedef Triplet<Scalar,Index> TripletType; std::vector<TripletType> triplets; double nelements = density * rows*cols; VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest()); Index ntriplets = Index(nelements); triplets.reserve(ntriplets); Scalar sum = Scalar(0); for(Index i=0;i<ntriplets;++i) { Index r = internal::random<Index>(0,rows-1); Index c = internal::random<Index>(0,cols-1); Scalar v = internal::random<Scalar>(); triplets.push_back(TripletType(r,c,v)); sum += v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY(m.nonZeros() <= ntriplets); VERIFY_IS_APPROX(sum, m.sum()); }
void test_sparse_basic() { for(int i = 0; i < g_repeat; i++) { int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); if(Eigen::internal::random<int>(0,4) == 0) { r = c; // check square matrices in 25% of tries
} EIGEN_UNUSED_VARIABLE(r+c); CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) )); CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) )); CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) )); CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) )); r = Eigen::internal::random<int>(1,100); c = Eigen::internal::random<int>(1,100); if(Eigen::internal::random<int>(0,4) == 0) { r = c; // check square matrices in 25% of tries
} CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); }
// Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125))); CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
// Regression test for bug 1105
#ifdef EIGEN_TEST_PART_6
{ int n = Eigen::internal::random<int>(200,600); SparseMatrix<std::complex<double>,0, long> mat(n, n); std::complex<double> val;
for(int i=0; i<n; ++i) { mat.coeffRef(i, i%(n/10)) = val; VERIFY(mat.data().allocatedSize()<20*n); } } #endif
}
|