|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/SVD>
template<typename MatrixType, typename JacobiScalar> void jacobi(const MatrixType& m = MatrixType()) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
const MatrixType a(MatrixType::Random(rows, cols));
JacobiVector v = JacobiVector::Random().normalized(); JacobiScalar c = v.x(), s = v.y(); JacobiRotation<JacobiScalar> rot(c, s);
{ Index p = internal::random<Index>(0, rows-1); Index q; do { q = internal::random<Index>(0, rows-1); } while (q == p);
MatrixType b = a; b.applyOnTheLeft(p, q, rot); VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q)); VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q)); }
{ Index p = internal::random<Index>(0, cols-1); Index q; do { q = internal::random<Index>(0, cols-1); } while (q == p);
MatrixType b = a; b.applyOnTheRight(p, q, rot); VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q)); VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q)); } }
void test_jacobi() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( jacobi<Matrix3f, float>() )); CALL_SUBTEST_2(( jacobi<Matrix4d, double>() )); CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() )); CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2), c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2); CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) )); CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) )); CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) )); // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) )); CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) )); (void) r; (void) c; } }
|