|
|
// A simple quickref for Eigen. Add anything that's missing. // Main author: Keir Mierle
#include <Eigen/Core> #include <Eigen/Array>
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols. Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd. Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major. Matrix3f P, Q, R; // 3x3 float matrix. Vector3f x, y, z; // 3x1 float matrix. RowVector3f a, b, c; // 1x3 float matrix. double s;
// Basic usage // Eigen // Matlab // comments x.size() // length(x) // vector size C.rows() // size(C)(1) // number of rows C.cols() // size(C)(2) // number of columns x(i) // x(i+1) // Matlab is 1-based C(i,j) // C(i+1,j+1) //
A.resize(4, 4); // Runtime error if assertions are on. B.resize(4, 9); // Runtime error if assertions are on. A.resize(3, 3); // Ok; size didn't change. B.resize(3, 9); // Ok; only dynamic cols changed. A << 1, 2, 3, // Initialize A. The elements can also be 4, 5, 6, // matrices, which are stacked along cols 7, 8, 9; // and then the rows are stacked. B << A, A, A; // B is three horizontally stacked A's. A.fill(10); // Fill A with all 10's. A.setRandom(); // Fill A with uniform random numbers in (-1, 1). // Requires #include <Eigen/Array>. A.setIdentity(); // Fill A with the identity.
// Matrix slicing and blocks. All expressions listed here are read/write. // Templated size versions are faster. Note that Matlab is 1-based (a size N // vector is x(1)...x(N)). // Eigen // Matlab x.head(n) // x(1:n) x.head<n>() // x(1:n) x.tail(n) // N = rows(x); x(N - n: N) x.tail<n>() // N = rows(x); x(N - n: N) x.segment(i, n) // x(i+1 : i+n) x.segment<n>(i) // x(i+1 : i+n) P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols) P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols) P.topLeftCorner(rows, cols) // P(1:rows, 1:cols) P.topRightCorner(rows, cols) // [m n]=size(P); P(1:rows, n-cols+1:n) P.bottomLeftCorner(rows, cols) // [m n]=size(P); P(m-rows+1:m, 1:cols) P.bottomRightCorner(rows, cols) // [m n]=size(P); P(m-rows+1:m, n-cols+1:n) P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols) P.topRightCorner<rows,cols>() // [m n]=size(P); P(1:rows, n-cols+1:n) P.bottomLeftCorner<rows,cols>() // [m n]=size(P); P(m-rows+1:m, 1:cols) P.bottomRightCorner<rows,cols>() // [m n]=size(P); P(m-rows+1:m, n-cols+1:n)
// Of particular note is Eigen's swap function which is highly optimized. // Eigen // Matlab R.row(i) = P.col(j); // R(i, :) = P(:, i) R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc; all read-write except for .adjoint(). // Eigen // Matlab R.adjoint() // R' R.transpose() // R.' or conj(R') R.diagonal() // diag(R) x.asDiagonal() // diag(x)
// All the same as Matlab, but matlab doesn't have *= style operators. // Matrix-vector. Matrix-matrix. Matrix-scalar. y = M*x; R = P*Q; R = P*s; a = b*M; R = P - Q; R = s*P; a *= M; R = P + Q; R = P/s; R *= Q; R = s*P; R += Q; R *= s; R -= Q; R /= s;
// Vectorized operations on each element independently // (most require #include <Eigen/Array>) // Eigen // Matlab R = P.cwiseProduct(Q); // R = P .* Q R = P.array() * s.array();// R = P .* s R = P.cwiseQuotient(Q); // R = P ./ Q R = P.array() / Q.array();// R = P ./ Q R = P.array() + s.array();// R = P + s R = P.array() - s.array();// R = P - s R.array() += s; // R = R + s R.array() -= s; // R = R - s R.array() < Q.array(); // R < Q R.array() <= Q.array(); // R <= Q R.cwiseInverse(); // 1 ./ P R.array().inverse(); // 1 ./ P R.array().sin() // sin(P) R.array().cos() // cos(P) R.array().pow(s) // P .^ s R.array().square() // P .^ 2 R.array().cube() // P .^ 3 R.cwiseSqrt() // sqrt(P) R.array().sqrt() // sqrt(P) R.array().exp() // exp(P) R.array().log() // log(P) R.cwiseMax(P) // max(R, P) R.array().max(P.array()) // max(R, P) R.cwiseMin(P) // min(R, P) R.array().min(P.array()) // min(R, P) R.cwiseAbs() // abs(P) R.array().abs() // abs(P) R.cwiseAbs2() // abs(P.^2) R.array().abs2() // abs(P.^2) (R.array() < s).select(P,Q); // (R < s ? P : Q)
// Reductions. int r, c; // Eigen // Matlab R.minCoeff() // min(R(:)) R.maxCoeff() // max(R(:)) s = R.minCoeff(&r, &c) // [aa, bb] = min(R); [cc, dd] = min(aa); // r = bb(dd); c = dd; s = cc s = R.maxCoeff(&r, &c) // [aa, bb] = max(R); [cc, dd] = max(aa); // row = bb(dd); col = dd; s = cc R.sum() // sum(R(:)) R.colwise.sum() // sum(R) R.rowwise.sum() // sum(R, 2) or sum(R')' R.prod() // prod(R(:)) R.colwise.prod() // prod(R) R.rowwise.prod() // prod(R, 2) or prod(R')' R.trace() // trace(R) R.all() // all(R(:)) R.colwise().all() // all(R) R.rowwise().all() // all(R, 2) R.any() // any(R(:)) R.colwise().any() // any(R) R.rowwise().any() // any(R, 2)
// Dot products, norms, etc. // Eigen // Matlab x.norm() // norm(x). Note that norm(R) doesn't work in Eigen. x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex x.dot(y) // dot(x, y) x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
// Eigen can map existing memory into Eigen matrices. float array[3]; Map<Vector3f>(array, 3).fill(10); int data[4] = 1, 2, 3, 4; Matrix2i mat2x2(data); MatrixXi mat2x2 = Map<Matrix2i>(data); MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
// Solve Ax = b. Result stored in x. Matlab: x = A \ b. bool solved; solved = A.ldlt().solve(b, &x)); // A sym. p.s.d. #include <Eigen/Cholesky> solved = A.llt() .solve(b, &x)); // A sym. p.d. #include <Eigen/Cholesky> solved = A.lu() .solve(b, &x)); // Stable and fast. #include <Eigen/LU> solved = A.qr() .solve(b, &x)); // No pivoting. #include <Eigen/QR> solved = A.svd() .solve(b, &x)); // Stable, slowest. #include <Eigen/SVD> // .ldlt() -> .matrixL() and .matrixD() // .llt() -> .matrixL() // .lu() -> .matrixL() and .matrixU() // .qr() -> .matrixQ() and .matrixR() // .svd() -> .matrixU(), .singularValues(), and .matrixV()
// Eigenvalue problems // Eigen // Matlab A.eigenvalues(); // eig(A); EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A) eig.eigenvalues(); // diag(val) eig.eigenvectors(); // vec
|