|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1);
ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols);
ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols);
// test addition
m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
// test substraction
m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose());
// test multiplication
m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec);
VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose());
m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose());
// test quotient
m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec);
VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose());
m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); }
template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1);
MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols);
ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols);
// test addition
m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec);
VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose());
m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose());
// test substraction
m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec);
VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose());
m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec);
VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); }
void test_vectorwiseop() { CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>())); CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float,4,5>())); CALL_SUBTEST_6(vectorwiseop_matrix(MatrixXd(7,2))); }
|