|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LeastSquares>
template<typename VectorType, typename HyperplaneType> void makeNoisyCohyperplanarPoints(int numPoints, VectorType **points, HyperplaneType *hyperplane, typename VectorType::Scalar noiseAmplitude) { typedef typename VectorType::Scalar Scalar; const int size = points[0]->size(); // pick a random hyperplane, store the coefficients of its equation
hyperplane->coeffs().resize(size + 1); for(int j = 0; j < size + 1; j++) { do { hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>(); } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5); }
// now pick numPoints random points on this hyperplane
for(int i = 0; i < numPoints; i++) { VectorType& cur_point = *(points[i]); do { cur_point = VectorType::Random(size)/*.normalized()*/; // project cur_point onto the hyperplane
Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum(); cur_point *= hyperplane->coeffs().coeff(size) / x; } while( cur_point.norm() < 0.5 || cur_point.norm() > 2.0 ); }
// add some noise to these points
for(int i = 0; i < numPoints; i++ ) *(points[i]) += noiseAmplitude * VectorType::Random(size); }
template<typename VectorType> void check_linearRegression(int numPoints, VectorType **points, const VectorType& original, typename VectorType::Scalar tolerance) { int size = points[0]->size(); assert(size==2); VectorType result(size); linearRegression(numPoints, points, &result, 1); typename VectorType::Scalar error = (result - original).norm() / original.norm(); VERIFY(ei_abs(error) < ei_abs(tolerance)); }
template<typename VectorType, typename HyperplaneType> void check_fitHyperplane(int numPoints, VectorType **points, const HyperplaneType& original, typename VectorType::Scalar tolerance) { int size = points[0]->size(); HyperplaneType result(size); fitHyperplane(numPoints, points, &result); result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size); typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm(); std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl; VERIFY(ei_abs(error) < ei_abs(tolerance)); }
void test_eigen2_regression() { for(int i = 0; i < g_repeat; i++) { #ifdef EIGEN_TEST_PART_1
{ Vector2f points2f [1000]; Vector2f *points2f_ptrs [1000]; for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); Vector2f coeffs2f; Hyperplane<float,2> coeffs3f; makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1]; coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1]; CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f)); CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f)); CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f)); } #endif
#ifdef EIGEN_TEST_PART_2
{ Vector2f points2f [1000]; Vector2f *points2f_ptrs [1000]; for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); Hyperplane<float,2> coeffs3f; makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f)); CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f)); CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f)); } #endif
#ifdef EIGEN_TEST_PART_3
{ Vector4d points4d [1000]; Vector4d *points4d_ptrs [1000]; for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]); Hyperplane<double,4> coeffs5d; makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01); CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05)); CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01)); CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002)); } #endif
#ifdef EIGEN_TEST_PART_4
{ VectorXcd *points11cd_ptrs[1000]; for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11); Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11); makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01); CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025)); CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006)); delete coeffs12cd; for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i]; } #endif
} }
|