|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
#ifdef HAS_GSL
#include "gsl_helper.h"
#endif
template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) { /* this test covers the following files:
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ int rows = m.rows(); int cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
RealScalar largerEps = 10*test_precision<RealScalar>();
MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); // generalized eigen pb
SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
#ifdef HAS_GSL
if (ei_is_same_type<RealScalar,double>::ret) { typedef GslTraits<Scalar> Gsl; typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; typename GslTraits<RealScalar>::Vector gEval=0; RealVectorType _eval; MatrixType _evec; convert<MatrixType>(symmA, gSymmA); convert<MatrixType>(symmB, gSymmB); convert<MatrixType>(symmA, gEvec); gEval = GslTraits<RealScalar>::createVector(rows);
Gsl::eigen_symm(gSymmA, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec);
// test gsl itself !
VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));
// compare with eigen
VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
// generalized pb
Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec); // test GSL itself:
VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));
// compare with eigen
MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());
Gsl::free(gSymmA); Gsl::free(gSymmB); GslTraits<RealScalar>::free(gEval); Gsl::free(gEvec); } #endif
VERIFY((symmA * eiSymm.eigenvectors()).isApprox( eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
// generalized eigen problem Ax = lBx
VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
MatrixType sqrtSymmA = eiSymm.operatorSqrt(); VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA); VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt()); }
template<typename MatrixType> void eigensolver(const MatrixType& m) { /* this test covers the following files:
EigenSolver.h */ int rows = m.rows(); int cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
// RealScalar largerEps = 10*test_precision<RealScalar>();
MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
EigenSolver<MatrixType> ei0(symmA); VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
EigenSolver<MatrixType> ei1(a); VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
}
void test_eigen2_eigensolver() { for(int i = 0; i < g_repeat; i++) { // very important to test a 3x3 matrix since we provide a special path for it
CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) ); CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) ); CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) );
CALL_SUBTEST_6( eigensolver(Matrix4f()) ); CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) ); } }
|