|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
template<typename MatrixType> void determinant(const MatrixType& m) { /* this test covers the following files:
Determinant.h */ int size = m.rows();
MatrixType m1(size, size), m2(size, size); m1.setRandom(); m2.setRandom(); typedef typename MatrixType::Scalar Scalar; Scalar x = ei_random<Scalar>(); VERIFY_IS_APPROX(MatrixType::Identity(size, size).determinant(), Scalar(1)); VERIFY_IS_APPROX((m1*m2).determinant(), m1.determinant() * m2.determinant()); if(size==1) return; int i = ei_random<int>(0, size-1); int j; do { j = ei_random<int>(0, size-1); } while(j==i); m2 = m1; m2.row(i).swap(m2.row(j)); VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); m2 = m1; m2.col(i).swap(m2.col(j)); VERIFY_IS_APPROX(m2.determinant(), -m1.determinant()); VERIFY_IS_APPROX(m2.determinant(), m2.transpose().determinant()); VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant()); m2 = m1; m2.row(i) += x*m2.row(j); VERIFY_IS_APPROX(m2.determinant(), m1.determinant()); m2 = m1; m2.row(i) *= x; VERIFY_IS_APPROX(m2.determinant(), m1.determinant() * x); }
void test_eigen2_determinant() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( determinant(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( determinant(Matrix<double, 2, 2>()) ); CALL_SUBTEST_3( determinant(Matrix<double, 3, 3>()) ); CALL_SUBTEST_4( determinant(Matrix<double, 4, 4>()) ); CALL_SUBTEST_5( determinant(Matrix<std::complex<double>, 10, 10>()) ); CALL_SUBTEST_6( determinant(MatrixXd(20, 20)) ); } CALL_SUBTEST_6( determinant(MatrixXd(200, 200)) ); }
|