You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

160 lines
3.4 KiB

// Ring of rational numbers.
// General includes.
#include "cl_sysdep.h"
CL_PROVIDE(cl_RA_ring)
// Specification.
#include "cln/rational_ring.h"
// Implementation.
#include "cln/rational.h"
#include "cln/rational_io.h"
#include "cl_RA.h"
namespace cln {
static void RA_fprint (cl_heap_ring* R, std::ostream& stream, const _cl_ring_element& x)
{
unused R;
fprint(stream,The(cl_RA)(x));
}
static cl_boolean RA_equal (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
unused R;
return equal(The(cl_RA)(x),The(cl_RA)(y));
}
static const _cl_ring_element RA_zero (cl_heap_ring* R)
{
return _cl_ring_element(R, (cl_RA)0);
}
static cl_boolean RA_zerop (cl_heap_ring* R, const _cl_ring_element& x)
{
unused R;
return zerop(The(cl_RA)(x));
}
static const _cl_ring_element RA_plus (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_RA)(x) + The(cl_RA)(y));
}
static const _cl_ring_element RA_minus (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_RA)(x) - The(cl_RA)(y));
}
static const _cl_ring_element RA_uminus (cl_heap_ring* R, const _cl_ring_element& x)
{
return _cl_ring_element(R, - The(cl_RA)(x));
}
static const _cl_ring_element RA_one (cl_heap_ring* R)
{
return _cl_ring_element(R, (cl_RA)1);
}
static const _cl_ring_element RA_canonhom (cl_heap_ring* R, const cl_I& x)
{
return _cl_ring_element(R, (cl_RA)x);
}
static const _cl_ring_element RA_mul (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_RA)(x) * The(cl_RA)(y));
}
static const _cl_ring_element RA_square (cl_heap_ring* R, const _cl_ring_element& x)
{
return _cl_ring_element(R, square(The(cl_RA)(x)));
}
static const _cl_ring_element RA_expt_pos (cl_heap_ring* R, const _cl_ring_element& x, const cl_I& y)
{
return _cl_ring_element(R, expt_pos(The(cl_RA)(x),y));
}
static cl_boolean cl_RA_p (const cl_number& x)
{
return (cl_boolean)
(!x.pointer_p()
? x.nonpointer_tag() == cl_FN_tag
: (x.pointer_type()->flags & cl_class_flags_subclass_rational) != 0
);
}
static cl_ring_setops RA_setops = {
RA_fprint,
RA_equal
};
static cl_ring_addops RA_addops = {
RA_zero,
RA_zerop,
RA_plus,
RA_minus,
RA_uminus
};
static cl_ring_mulops RA_mulops = {
RA_one,
RA_canonhom,
RA_mul,
RA_square,
RA_expt_pos
};
static cl_number_ring_ops<cl_RA> RA_ops = {
cl_RA_p,
equal,
zerop,
operator+,
operator-,
operator-,
operator*,
square,
expt_pos
};
class cl_heap_rational_ring : public cl_heap_number_ring {
SUBCLASS_cl_heap_ring()
public:
// Constructor.
cl_heap_rational_ring ()
: cl_heap_number_ring (&RA_setops,&RA_addops,&RA_mulops,
(cl_number_ring_ops<cl_number>*) &RA_ops)
{ type = &cl_class_rational_ring; }
// Destructor.
~cl_heap_rational_ring () {}
};
static void cl_rational_ring_destructor (cl_heap* pointer)
{
(*(cl_heap_rational_ring*)pointer).~cl_heap_rational_ring();
}
static void cl_rational_ring_dprint (cl_heap* pointer)
{
unused pointer;
fprint(cl_debugout, "(cl_rational_ring) cl_RA_ring");
}
cl_class cl_class_rational_ring = {
cl_rational_ring_destructor,
cl_class_flags_number_ring,
cl_rational_ring_dprint
};
// Constructor.
inline cl_rational_ring::cl_specialized_number_ring ()
: cl_number_ring (new cl_heap_rational_ring()) {}
const cl_rational_ring cl_RA_ring;
} // namespace cln
CL_PROVIDE_END(cl_RA_ring)