41 lines
1.3 KiB
41 lines
1.3 KiB
ABI Issues:
|
|
|
|
Remove extra signatures in cl_FF_from_float.cc, cl_DF_from_double.cc,
|
|
cl_F_readparsed.cc, cl_I_readparsed.cc, and cl_RA_readparsed.cc.
|
|
|
|
|
|
Algorithms:
|
|
|
|
Niels Moeller's subquadratic GCD
|
|
|
|
- polynomial division and gcd
|
|
- polynomial documentation
|
|
7. add combinatorial, linear algebra, factorization, polynomial functions
|
|
as in SAC-2.
|
|
7. finite fields, e.g.
|
|
- gf256_log_2, gf256_antilog_2, gf256_power_of_2, gf256_add, gf256_minus,
|
|
gf256_subtract, gf256_mul, gf256_inv, gf256_div, gf256_product, gf256_exp,
|
|
gf256_term, gfmul, gfadd, gfinv, gfexp.
|
|
more polynomial operations:
|
|
x(), power, >>, <<, division, scalmult, content, primitivepart,
|
|
gcd, xgcd, no_of_real_roots, factorization.
|
|
modular polynomials: powmod etc.
|
|
7. chinese remainder algorithm, maybe Hensel-lifting as in Magnum.
|
|
8. factor and primality testing for small integers
|
|
8. primality test in Z:
|
|
+ polynomials cl_MUP_MI, cl_MUP_I
|
|
use integer FFT for multiplication in cl_UP_MI and cl_MUP_MI
|
|
+ - Pollard rho
|
|
+ - complex values of j()
|
|
- Hilbert polynomial for j() 7.6.1
|
|
+ roots of polynomials mod N 1.6.1
|
|
+ - elliptic curves, Jacobi representation
|
|
- m.P on elliptic curve
|
|
+ Atkin's algorithm
|
|
10. factoring in Z:
|
|
- small prime table,
|
|
- Pollard rho,
|
|
- multiple polynomial quadratic sieve
|
|
|
|
Document the timing class
|
|
|