You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

183 lines
6.6 KiB

// zeta().
// General includes.
#include "cl_sysdep.h"
// Specification.
#include "cl_F_tran.h"
// Implementation.
#include "cln/lfloat.h"
#include "cl_LF_tran.h"
#include "cl_LF.h"
#include "cln/integer.h"
#include "cln/exception.h"
#include "cl_alloca.h"
namespace cln {
const cl_LF compute_zeta_exp (int s, uintC len)
{
// Method:
// zeta(s) = 1/(1-2^(1-s)) sum(n=0..infty, (-1)^n/(n+1)^s),
// with convergence acceleration through exp(x), and evaluated
// using the binary-splitting algorithm.
var uintC actuallen = len+2; // 2 Schutz-Digits
var uintC x = (uintC)(0.693148*intDsize*actuallen)+1;
var uintC N = (uintC)(2.718281828*x);
CL_ALLOCA_STACK;
var cl_pqd_series_term* args = (cl_pqd_series_term*) cl_alloca(N*sizeof(cl_pqd_series_term));
var uintC n;
for (n = 0; n < N; n++) {
if (n==0) {
init1(cl_I, args[n].p) (1);
init1(cl_I, args[n].q) (1);
} else {
init1(cl_I, args[n].p) (x);
init1(cl_I, args[n].q) (n);
}
init1(cl_I, args[n].d) (evenp(n)
? expt_pos(n+1,s)
: -expt_pos(n+1,s));
}
var cl_LF result = eval_pqd_series(N,args,actuallen);
for (n = 0; n < N; n++) {
args[n].p.~cl_I();
args[n].q.~cl_I();
args[n].d.~cl_I();
}
result = shorten(result,len); // verkürzen und fertig
// Zum Schluss mit 2^(s-1)/(2^(s-1)-1) multiplizieren:
return scale_float(result,s-1) / (ash(1,s-1)-1);
}
// Bit complexity (N = len): O(log(N)^2*M(N)).
const cl_LF compute_zeta_cvz1 (int s, uintC len)
{
// Method:
// zeta(s) = 1/(1-2^(1-s)) sum(n=0..infty, (-1)^n/(n+1)^s),
// with Cohen-Villegas-Zagier convergence acceleration.
var uintC actuallen = len+2; // 2 Schutz-Digits
var uintC N = (uintC)(0.39321985*intDsize*actuallen)+1;
var cl_I fterm = 2*(cl_I)N*(cl_I)N;
var cl_I fsum = fterm;
var cl_LF gterm = cl_I_to_LF(fterm,actuallen);
var cl_LF gsum = gterm;
var uintC n;
// After n loops
// fterm = (N+n)!N/(2n+2)!(N-n-1)!*2^(2n+2), fsum = ... + fterm,
// gterm = S_n*fterm, gsum = ... + gterm.
for (n = 1; n < N; n++) {
fterm = exquopos(fterm*(2*(cl_I)(N-n)*(cl_I)(N+n)),(cl_I)(2*n+1)*(cl_I)(n+1));
fsum = fsum + fterm;
gterm = The(cl_LF)(gterm*(2*(cl_I)(N-n)*(cl_I)(N+n)))/((cl_I)(2*n+1)*(cl_I)(n+1));
if (evenp(n))
gterm = gterm + cl_I_to_LF(fterm,actuallen)/expt_pos(n+1,s);
else
gterm = gterm - cl_I_to_LF(fterm,actuallen)/expt_pos(n+1,s);
gsum = gsum + gterm;
}
var cl_LF result = gsum/cl_I_to_LF(1+fsum,actuallen);
result = shorten(result,len); // verkürzen und fertig
// Zum Schluss mit 2^(s-1)/(2^(s-1)-1) multiplizieren:
return scale_float(result,s-1) / (ash(1,s-1)-1);
}
// Bit complexity (N = len): O(N^2).
const cl_LF compute_zeta_cvz2 (int s, uintC len)
{
// Method:
// zeta(s) = 1/(1-2^(1-s)) sum(n=0..infty, (-1)^n/(n+1)^s),
// with Cohen-Villegas-Zagier convergence acceleration, and
// evaluated using the binary splitting algorithm with truncation.
var uintC actuallen = len+2; // 2 guard digits
var uintC N = (uintC)(0.39321985*intDsize*actuallen)+1;
var uintC n;
struct rational_series_stream : cl_pqd_series_stream {
uintC n;
int s;
uintC N;
static cl_pqd_series_term computenext (cl_pqd_series_stream& thisss)
{
var rational_series_stream& thiss = (rational_series_stream&)thisss;
var uintC n = thiss.n;
var uintC s = thiss.s;
var uintC N = thiss.N;
var cl_pqd_series_term result;
result.p = 2*(cl_I)(N-n)*(cl_I)(N+n);
result.q = (cl_I)(2*n+1)*(cl_I)(n+1);
result.d = evenp(n) ? expt_pos(n+1,s) : -expt_pos(n+1,s);
thiss.n = n+1;
return result;
}
rational_series_stream (int s_, uintC N_)
: cl_pqd_series_stream (rational_series_stream::computenext),
n (0), s (s_), N (N_) {}
} series(s,N);
var cl_pqd_series_result<cl_I> sums;
eval_pqd_series_aux(N,series,sums,actuallen);
// Here we need U/(1+S) = V/D(Q+T).
var cl_LF result =
cl_I_to_LF(sums.V,actuallen) / The(cl_LF)(sums.D * cl_I_to_LF(sums.Q+sums.T,actuallen));
result = shorten(result,len); // verkürzen und fertig
// Zum Schluss mit 2^(s-1)/(2^(s-1)-1) multiplizieren:
return scale_float(result,s-1) / (ash(1,s-1)-1);
}
// Bit complexity (N = len): O(log(N)^2*M(N)).
// Timings of the above algorithm in seconds, on a P-4, 3GHz, running Linux.
// s 5 15
// N sum_exp sum_cvz1 sum_cvz2 sum_exp sum_cvz1 sum_cvz2
// 125 0.60 0.04 0.06 1.88 0.04 0.20
// 250 1.60 0.13 0.19 4.82 0.15 0.58
// 500 4.3 0.48 0.60 12.2 0.55 1.67
// 1000 11.0 1.87 1.63 31.7 2.11 4.60
// 2000 28.0 7.4 4.23 111 8.2 11.3
// 4000 70.2 30.6 10.6 50 44
// 8000 142 26.8 169 75
// asymp. FAST N^2 FAST FAST N^2 FAST
//
// s 35 75
// N sum_exp sum_cvz1 sum_cvz2 sum_exp sum_cvz1 sum_cvz2
// 125 4.70 0.05 0.53 11.3 0.07 1.35
// 250 12.5 0.19 1.62 28.7 0.25 3.74
// 500 31.3 0.69 4.40 70.2 0.96 10.2
// 1000 88.8 2.70 11.4 191 3.76 25.4
// 2000 10.9 28.9 15.6 64.3
// 4000 46 73 64.4 170
// 8000 215 178 295 397
// 16000 898 419 1290 972
// asymp. FAST N^2 FAST FAST N^2 FAST
//
// The break-even point between cvz1 and cvz2 seems to grow linearly with s.
// Timings of the above algorithm, on an i486 33 MHz, running Linux.
// s 5 15
// N sum_exp sum_cvz1 sum_cvz2 sum_exp sum_cvz1 sum_cvz2
// 10 2.04 0.09 0.17 8.0 0.11 0.49
// 25 8.6 0.30 0.76 30.6 0.37 2.36
// 50 25.1 0.92 2.49 91.1 1.15 7.9
// 100 2.97 8.46 3.75 24.5
// 250 16.7 36.5 21.7 108
// 500 64.2 106 85.3 295
// 1000 263 285 342 788
// asymp. FAST N^2 FAST FAST N^2 FAST
//
// The break-even point between cvz1 and cvz2 seems to grow linearly with s.
const cl_LF zeta (int s, uintC len)
{
if (!(s > 1))
throw runtime_exception("zeta(s) with illegal s<2.");
if (s==3)
return zeta3(len);
if (len < 220*(uintC)s)
return compute_zeta_cvz1(s,len);
else
return compute_zeta_cvz2(s,len);
}
// Bit complexity (N = len): O(log(N)^2*M(N)).
} // namespace cln