You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
470 lines
15 KiB
470 lines
15 KiB
// Modular integer operations.
|
|
|
|
#ifndef _CL_MODINTEGER_H
|
|
#define _CL_MODINTEGER_H
|
|
|
|
#include "cl_object.h"
|
|
#include "cl_ring.h"
|
|
#include "cl_integer.h"
|
|
#include "cl_random.h"
|
|
#include "cl_malloc.h"
|
|
#include "cl_io.h"
|
|
#include "cl_proplist.h"
|
|
#include "cl_condition.h"
|
|
#include "cl_abort.h"
|
|
#undef random // Linux defines random() as a macro!
|
|
|
|
|
|
// Representation of an element of a ring Z/mZ.
|
|
|
|
// To protect against mixing elements of different modular rings, such as
|
|
// (3 mod 4) + (2 mod 5), every modular integer carries its ring in itself.
|
|
|
|
|
|
// Representation of a ring Z/mZ.
|
|
|
|
class cl_heap_modint_ring;
|
|
|
|
class cl_modint_ring : public cl_ring {
|
|
public:
|
|
// Default constructor.
|
|
cl_modint_ring ();
|
|
// Constructor. Takes a cl_heap_modint_ring*, increments its refcount.
|
|
cl_modint_ring (cl_heap_modint_ring* r);
|
|
// Copy constructor.
|
|
cl_modint_ring (const cl_modint_ring&);
|
|
// Assignment operator.
|
|
cl_modint_ring& operator= (const cl_modint_ring&);
|
|
// Automatic dereferencing.
|
|
cl_heap_modint_ring* operator-> () const
|
|
{ return (cl_heap_modint_ring*)heappointer; }
|
|
};
|
|
|
|
// Z/0Z
|
|
extern const cl_modint_ring cl_modint0_ring;
|
|
// Default constructor. This avoids dealing with NULL pointers.
|
|
inline cl_modint_ring::cl_modint_ring ()
|
|
: cl_ring (as_cl_private_thing(cl_modint0_ring)) {}
|
|
CL_REQUIRE(cl_MI)
|
|
// Copy constructor and assignment operator.
|
|
CL_DEFINE_COPY_CONSTRUCTOR2(cl_modint_ring,cl_ring)
|
|
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_modint_ring,cl_modint_ring)
|
|
|
|
// Normal constructor for `cl_modint_ring'.
|
|
inline cl_modint_ring::cl_modint_ring (cl_heap_modint_ring* r)
|
|
: cl_ring ((cl_private_thing) (cl_inc_pointer_refcount((cl_heap*)r), r)) {}
|
|
|
|
// Operations on modular integer rings.
|
|
|
|
inline bool operator== (const cl_modint_ring& R1, const cl_modint_ring& R2)
|
|
{ return (R1.pointer == R2.pointer); }
|
|
inline bool operator!= (const cl_modint_ring& R1, const cl_modint_ring& R2)
|
|
{ return (R1.pointer != R2.pointer); }
|
|
inline bool operator== (const cl_modint_ring& R1, cl_heap_modint_ring* R2)
|
|
{ return (R1.pointer == R2); }
|
|
inline bool operator!= (const cl_modint_ring& R1, cl_heap_modint_ring* R2)
|
|
{ return (R1.pointer != R2); }
|
|
|
|
|
|
// Condition raised when a probable prime is discovered to be composite.
|
|
struct cl_composite_condition : public cl_condition {
|
|
SUBCLASS_cl_condition()
|
|
cl_I p; // the non-prime
|
|
cl_I factor; // a nontrivial factor, or 0
|
|
// Constructors.
|
|
cl_composite_condition (const cl_I& _p)
|
|
: p (_p), factor (0)
|
|
{ print(cl_stderr); }
|
|
cl_composite_condition (const cl_I& _p, const cl_I& _f)
|
|
: p (_p), factor (_f)
|
|
{ print(cl_stderr); }
|
|
// Implement general condition methods.
|
|
const char * name () const;
|
|
void print (cl_ostream) const;
|
|
~cl_composite_condition () {}
|
|
};
|
|
|
|
|
|
// Representation of an element of a ring Z/mZ.
|
|
|
|
class _cl_MI /* cf. _cl_ring_element */ {
|
|
public:
|
|
cl_I rep; // representative, integer >=0, <m
|
|
// (maybe the Montgomery representative!)
|
|
// Default constructor.
|
|
_cl_MI () : rep () {}
|
|
public: /* ugh */
|
|
// Constructor.
|
|
_cl_MI (const cl_heap_modint_ring* R, const cl_I& r) : rep (r) { (void)R; }
|
|
_cl_MI (const cl_modint_ring& R, const cl_I& r) : rep (r) { (void)R; }
|
|
public:
|
|
// Conversion.
|
|
CL_DEFINE_CONVERTER(_cl_ring_element)
|
|
public: // Ability to place an object at a given address.
|
|
void* operator new (size_t size) { return cl_malloc_hook(size); }
|
|
void* operator new (size_t size, _cl_MI* ptr) { (void)size; return ptr; }
|
|
void operator delete (void* ptr) { cl_free_hook(ptr); }
|
|
};
|
|
|
|
class cl_MI /* cf. cl_ring_element */ : public _cl_MI {
|
|
protected:
|
|
cl_modint_ring _ring; // ring Z/mZ
|
|
public:
|
|
const cl_modint_ring& ring () const { return _ring; }
|
|
// Default constructor.
|
|
cl_MI () : _cl_MI (), _ring () {}
|
|
public: /* ugh */
|
|
// Constructor.
|
|
cl_MI (const cl_modint_ring& R, const cl_I& r) : _cl_MI (R,r), _ring (R) {}
|
|
cl_MI (const cl_modint_ring& R, const _cl_MI& r) : _cl_MI (r), _ring (R) {}
|
|
public:
|
|
// Conversion.
|
|
CL_DEFINE_CONVERTER(cl_ring_element)
|
|
// Debugging output.
|
|
void debug_print () const;
|
|
public: // Ability to place an object at a given address.
|
|
void* operator new (size_t size) { return cl_malloc_hook(size); }
|
|
void* operator new (size_t size, cl_MI* ptr) { (void)size; return ptr; }
|
|
void operator delete (void* ptr) { cl_free_hook(ptr); }
|
|
};
|
|
|
|
|
|
// Representation of an element of a ring Z/mZ or an exception.
|
|
|
|
class cl_MI_x {
|
|
private:
|
|
cl_MI value;
|
|
public:
|
|
cl_composite_condition* condition;
|
|
// Constructors.
|
|
cl_MI_x (cl_composite_condition* c) : value (), condition (c) {}
|
|
cl_MI_x (const cl_MI& x) : value (x), condition (NULL) {}
|
|
// Cast operators.
|
|
//operator cl_MI& () { if (condition) cl_abort(); return value; }
|
|
//operator const cl_MI& () const { if (condition) cl_abort(); return value; }
|
|
operator cl_MI () const { if (condition) cl_abort(); return value; }
|
|
};
|
|
|
|
|
|
// Ring operations.
|
|
|
|
struct _cl_modint_setops /* cf. _cl_ring_setops */ {
|
|
// print
|
|
void (* fprint) (cl_heap_modint_ring* R, cl_ostream stream, const _cl_MI& x);
|
|
// equality
|
|
cl_boolean (* equal) (cl_heap_modint_ring* R, const _cl_MI& x, const _cl_MI& y);
|
|
// random number
|
|
const _cl_MI (* random) (cl_heap_modint_ring* R, cl_random_state& randomstate);
|
|
};
|
|
struct _cl_modint_addops /* cf. _cl_ring_addops */ {
|
|
// 0
|
|
const _cl_MI (* zero) (cl_heap_modint_ring* R);
|
|
cl_boolean (* zerop) (cl_heap_modint_ring* R, const _cl_MI& x);
|
|
// x+y
|
|
const _cl_MI (* plus) (cl_heap_modint_ring* R, const _cl_MI& x, const _cl_MI& y);
|
|
// x-y
|
|
const _cl_MI (* minus) (cl_heap_modint_ring* R, const _cl_MI& x, const _cl_MI& y);
|
|
// -x
|
|
const _cl_MI (* uminus) (cl_heap_modint_ring* R, const _cl_MI& x);
|
|
};
|
|
struct _cl_modint_mulops /* cf. _cl_ring_mulops */ {
|
|
// 1
|
|
const _cl_MI (* one) (cl_heap_modint_ring* R);
|
|
// canonical homomorphism
|
|
const _cl_MI (* canonhom) (cl_heap_modint_ring* R, const cl_I& x);
|
|
// x*y
|
|
const _cl_MI (* mul) (cl_heap_modint_ring* R, const _cl_MI& x, const _cl_MI& y);
|
|
// x^2
|
|
const _cl_MI (* square) (cl_heap_modint_ring* R, const _cl_MI& x);
|
|
// x^y, y Integer >0
|
|
const _cl_MI (* expt_pos) (cl_heap_modint_ring* R, const _cl_MI& x, const cl_I& y);
|
|
// x^-1
|
|
const cl_MI_x (* recip) (cl_heap_modint_ring* R, const _cl_MI& x);
|
|
// x*y^-1
|
|
const cl_MI_x (* div) (cl_heap_modint_ring* R, const _cl_MI& x, const _cl_MI& y);
|
|
// x^y, y Integer
|
|
const cl_MI_x (* expt) (cl_heap_modint_ring* R, const _cl_MI& x, const cl_I& y);
|
|
// x -> x mod m for x>=0
|
|
const cl_I (* reduce_modulo) (cl_heap_modint_ring* R, const cl_I& x);
|
|
// some inverse of canonical homomorphism
|
|
const cl_I (* retract) (cl_heap_modint_ring* R, const _cl_MI& x);
|
|
};
|
|
#if defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 8) // workaround two g++-2.7.0 bugs
|
|
#define cl_modint_setops _cl_modint_setops
|
|
#define cl_modint_addops _cl_modint_addops
|
|
#define cl_modint_mulops _cl_modint_mulops
|
|
#else
|
|
typedef const _cl_modint_setops cl_modint_setops;
|
|
typedef const _cl_modint_addops cl_modint_addops;
|
|
typedef const _cl_modint_mulops cl_modint_mulops;
|
|
#endif
|
|
|
|
// Representation of the ring Z/mZ.
|
|
|
|
// Currently rings are garbage collected only when they are not referenced
|
|
// any more and when the ring table gets full.
|
|
|
|
// Modular integer rings are kept unique in memory. This way, ring equality
|
|
// can be checked very efficiently by a simple pointer comparison.
|
|
|
|
class cl_heap_modint_ring /* cf. cl_heap_ring */ : public cl_heap {
|
|
SUBCLASS_cl_heap_ring()
|
|
private:
|
|
cl_property_list properties;
|
|
protected:
|
|
cl_modint_setops* setops;
|
|
cl_modint_addops* addops;
|
|
cl_modint_mulops* mulops;
|
|
public:
|
|
cl_I modulus; // m, normalized to be >= 0
|
|
public:
|
|
// Low-level operations.
|
|
void _fprint (cl_ostream stream, const _cl_MI& x)
|
|
{ setops->fprint(this,stream,x); }
|
|
cl_boolean _equal (const _cl_MI& x, const _cl_MI& y)
|
|
{ return setops->equal(this,x,y); }
|
|
const _cl_MI _random (cl_random_state& randomstate)
|
|
{ return setops->random(this,randomstate); }
|
|
const _cl_MI _zero ()
|
|
{ return addops->zero(this); }
|
|
cl_boolean _zerop (const _cl_MI& x)
|
|
{ return addops->zerop(this,x); }
|
|
const _cl_MI _plus (const _cl_MI& x, const _cl_MI& y)
|
|
{ return addops->plus(this,x,y); }
|
|
const _cl_MI _minus (const _cl_MI& x, const _cl_MI& y)
|
|
{ return addops->minus(this,x,y); }
|
|
const _cl_MI _uminus (const _cl_MI& x)
|
|
{ return addops->uminus(this,x); }
|
|
const _cl_MI _one ()
|
|
{ return mulops->one(this); }
|
|
const _cl_MI _canonhom (const cl_I& x)
|
|
{ return mulops->canonhom(this,x); }
|
|
const _cl_MI _mul (const _cl_MI& x, const _cl_MI& y)
|
|
{ return mulops->mul(this,x,y); }
|
|
const _cl_MI _square (const _cl_MI& x)
|
|
{ return mulops->square(this,x); }
|
|
const _cl_MI _expt_pos (const _cl_MI& x, const cl_I& y)
|
|
{ return mulops->expt_pos(this,x,y); }
|
|
const cl_MI_x _recip (const _cl_MI& x)
|
|
{ return mulops->recip(this,x); }
|
|
const cl_MI_x _div (const _cl_MI& x, const _cl_MI& y)
|
|
{ return mulops->div(this,x,y); }
|
|
const cl_MI_x _expt (const _cl_MI& x, const cl_I& y)
|
|
{ return mulops->expt(this,x,y); }
|
|
const cl_I _reduce_modulo (const cl_I& x)
|
|
{ return mulops->reduce_modulo(this,x); }
|
|
const cl_I _retract (const _cl_MI& x)
|
|
{ return mulops->retract(this,x); }
|
|
// High-level operations.
|
|
void fprint (cl_ostream stream, const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
_fprint(stream,x);
|
|
}
|
|
cl_boolean equal (const cl_MI& x, const cl_MI& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
if (!(y.ring() == this)) cl_abort();
|
|
return _equal(x,y);
|
|
}
|
|
const cl_MI random (cl_random_state& randomstate = cl_default_random_state)
|
|
{
|
|
return cl_MI(this,_random(randomstate));
|
|
}
|
|
const cl_MI zero ()
|
|
{
|
|
return cl_MI(this,_zero());
|
|
}
|
|
cl_boolean zerop (const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return _zerop(x);
|
|
}
|
|
const cl_MI plus (const cl_MI& x, const cl_MI& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
if (!(y.ring() == this)) cl_abort();
|
|
return cl_MI(this,_plus(x,y));
|
|
}
|
|
const cl_MI minus (const cl_MI& x, const cl_MI& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
if (!(y.ring() == this)) cl_abort();
|
|
return cl_MI(this,_minus(x,y));
|
|
}
|
|
const cl_MI uminus (const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return cl_MI(this,_uminus(x));
|
|
}
|
|
const cl_MI one ()
|
|
{
|
|
return cl_MI(this,_one());
|
|
}
|
|
const cl_MI canonhom (const cl_I& x)
|
|
{
|
|
return cl_MI(this,_canonhom(x));
|
|
}
|
|
const cl_MI mul (const cl_MI& x, const cl_MI& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
if (!(y.ring() == this)) cl_abort();
|
|
return cl_MI(this,_mul(x,y));
|
|
}
|
|
const cl_MI square (const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return cl_MI(this,_square(x));
|
|
}
|
|
const cl_MI expt_pos (const cl_MI& x, const cl_I& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return cl_MI(this,_expt_pos(x,y));
|
|
}
|
|
const cl_MI_x recip (const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return _recip(x);
|
|
}
|
|
const cl_MI_x div (const cl_MI& x, const cl_MI& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
if (!(y.ring() == this)) cl_abort();
|
|
return _div(x,y);
|
|
}
|
|
const cl_MI_x expt (const cl_MI& x, const cl_I& y)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return _expt(x,y);
|
|
}
|
|
const cl_I reduce_modulo (const cl_I& x)
|
|
{
|
|
return _reduce_modulo(x);
|
|
}
|
|
const cl_I retract (const cl_MI& x)
|
|
{
|
|
if (!(x.ring() == this)) cl_abort();
|
|
return _retract(x);
|
|
}
|
|
// Miscellaneous.
|
|
sintL bits; // number of bits needed to represent a representative, or -1
|
|
int log2_bits; // log_2(bits), or -1
|
|
// Property operations.
|
|
cl_property* get_property (const cl_symbol& key)
|
|
{ return properties.get_property(key); }
|
|
void add_property (cl_property* new_property)
|
|
{ properties.add_property(new_property); }
|
|
// Constructor.
|
|
cl_heap_modint_ring (cl_I m, cl_modint_setops*, cl_modint_addops*, cl_modint_mulops*);
|
|
// This class is intented to be subclassable, hence needs a virtual destructor.
|
|
virtual ~cl_heap_modint_ring () {}
|
|
private:
|
|
virtual void dummy ();
|
|
};
|
|
#define SUBCLASS_cl_heap_modint_ring() \
|
|
SUBCLASS_cl_heap_ring()
|
|
|
|
// Lookup or create a modular integer ring Z/mZ
|
|
extern const cl_modint_ring cl_find_modint_ring (const cl_I& m);
|
|
CL_REQUIRE(cl_MI)
|
|
|
|
// Runtime typing support.
|
|
extern cl_class cl_class_modint_ring;
|
|
|
|
|
|
// Operations on modular integers.
|
|
|
|
// Output.
|
|
inline void fprint (cl_ostream stream, const cl_MI& x)
|
|
{ x.ring()->fprint(stream,x); }
|
|
CL_DEFINE_PRINT_OPERATOR(cl_MI)
|
|
|
|
// Add.
|
|
inline const cl_MI operator+ (const cl_MI& x, const cl_MI& y)
|
|
{ return x.ring()->plus(x,y); }
|
|
inline const cl_MI operator+ (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->plus(x,x.ring()->canonhom(y)); }
|
|
inline const cl_MI operator+ (const cl_I& x, const cl_MI& y)
|
|
{ return y.ring()->plus(y.ring()->canonhom(x),y); }
|
|
|
|
// Negate.
|
|
inline const cl_MI operator- (const cl_MI& x)
|
|
{ return x.ring()->uminus(x); }
|
|
|
|
// Subtract.
|
|
inline const cl_MI operator- (const cl_MI& x, const cl_MI& y)
|
|
{ return x.ring()->minus(x,y); }
|
|
inline const cl_MI operator- (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->minus(x,x.ring()->canonhom(y)); }
|
|
inline const cl_MI operator- (const cl_I& x, const cl_MI& y)
|
|
{ return y.ring()->minus(y.ring()->canonhom(x),y); }
|
|
|
|
// Shifts.
|
|
extern const cl_MI operator<< (const cl_MI& x, sintL y); // assume 0 <= y < 2^31
|
|
extern const cl_MI operator>> (const cl_MI& x, sintL y); // assume m odd, 0 <= y < 2^31
|
|
|
|
// Equality.
|
|
inline bool operator== (const cl_MI& x, const cl_MI& y)
|
|
{ return x.ring()->equal(x,y); }
|
|
inline bool operator!= (const cl_MI& x, const cl_MI& y)
|
|
{ return !x.ring()->equal(x,y); }
|
|
inline bool operator== (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->equal(x,x.ring()->canonhom(y)); }
|
|
inline bool operator!= (const cl_MI& x, const cl_I& y)
|
|
{ return !x.ring()->equal(x,x.ring()->canonhom(y)); }
|
|
inline bool operator== (const cl_I& x, const cl_MI& y)
|
|
{ return y.ring()->equal(y.ring()->canonhom(x),y); }
|
|
inline bool operator!= (const cl_I& x, const cl_MI& y)
|
|
{ return !y.ring()->equal(y.ring()->canonhom(x),y); }
|
|
|
|
// Compare against 0.
|
|
inline cl_boolean zerop (const cl_MI& x)
|
|
{ return x.ring()->zerop(x); }
|
|
|
|
// Multiply.
|
|
inline const cl_MI operator* (const cl_MI& x, const cl_MI& y)
|
|
{ return x.ring()->mul(x,y); }
|
|
|
|
// Squaring.
|
|
inline const cl_MI square (const cl_MI& x)
|
|
{ return x.ring()->square(x); }
|
|
|
|
// Exponentiation x^y, where y > 0.
|
|
inline const cl_MI expt_pos (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->expt_pos(x,y); }
|
|
|
|
// Reciprocal.
|
|
inline const cl_MI recip (const cl_MI& x)
|
|
{ return x.ring()->recip(x); }
|
|
|
|
// Division.
|
|
inline const cl_MI div (const cl_MI& x, const cl_MI& y)
|
|
{ return x.ring()->div(x,y); }
|
|
inline const cl_MI div (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->div(x,x.ring()->canonhom(y)); }
|
|
inline const cl_MI div (const cl_I& x, const cl_MI& y)
|
|
{ return y.ring()->div(y.ring()->canonhom(x),y); }
|
|
|
|
// Exponentiation x^y.
|
|
inline const cl_MI expt (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->expt(x,y); }
|
|
|
|
// Scalar multiplication.
|
|
inline const cl_MI operator* (const cl_I& x, const cl_MI& y)
|
|
{ return y.ring()->mul(y.ring()->canonhom(x),y); }
|
|
inline const cl_MI operator* (const cl_MI& x, const cl_I& y)
|
|
{ return x.ring()->mul(x.ring()->canonhom(y),x); }
|
|
|
|
// TODO: implement gcd, index (= gcd), unitp, sqrtp
|
|
|
|
|
|
// Debugging support.
|
|
#ifdef CL_DEBUG
|
|
extern int cl_MI_debug_module;
|
|
static void* const cl_MI_debug_dummy[] = { &cl_MI_debug_dummy,
|
|
&cl_MI_debug_module
|
|
};
|
|
#endif
|
|
|
|
|
|
#endif /* _CL_MODINTEGER_H */
|