You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

421 lines
21 KiB

// cl_UDS_divide().
// General includes.
#include "cl_sysdep.h"
// Specification.
#include "cl_DS.h"
// Implementation.
#include "cl_N.h"
#include "cln/abort.h"
namespace cln {
// We observe the following timings in seconds:
// Time for dividing a 2*n word number by a n word number:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n standard Newton standard Newton
// 10 0.000010 0.000024 0.000036 0.000058
// 30 0.000026 0.000080 0.00012 0.00027
// 100 0.00018 0.00048 0.00084 0.0016
// 300 0.0013 0.0028 0.0062 0.0090
// 1000 0.014 0.019 0.064 0.066 <-(~2200)
// 2000 0.058 0.058 <-(~2000) 0.26 0.20
// 3000 0.20 0.11 0.57 0.24
// 10000 2.3 0.50 6.7 1.2
// 30000 24.4 1.2 62.0 2.8
// Time for dividing a 3*n word number by a n word number:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n standard Newton standard Newton
// 10 0.000013 0.000040 0.000063 0.00011
// 30 0.000046 0.00018 0.00024 0.00062
// 100 0.00035 0.0012 0.0016 0.0040
// 300 0.0027 0.0071 0.012 0.021
// 1000 0.029 0.047 0.13 0.16
// 2000 0.12 0.14 <-(~2200) 0.51 0.45 <-(~1600)
// 3000 0.40 0.22 1.1 0.52
// 10000 4.5 0.76 13.2 2.0
// 30000 42.0 2.8 123.0 6.0
// Time for dividing m digits by n digits:
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
// Machine: P-III/450MHz Machine: EV5/300MHz:
// n Newton faster for: Newton faster for:
// 2-400 never never
// 600 never 670<m<900 (definitly negligible)
// 800 never 850<m<1500
// 1000 never 1030<m<2000
// 1200 1400<m<1700 1230<m<2700
// 1500 1590<m<2500 1530<m<5100, 6600<m (ridge negligible)
// 2000 2060<m<3600 2030<m
// 3000 3040<m 3030<m
// 4000 4030<m 4030<m
// 5000 5030<m 5030<m
// 8000 8030<m 8030<m
// Break-even-point, should be acceptable for both architectures.
// When in doubt, prefer to choose the standard algorithm.
#if CL_USE_GMP
static inline cl_boolean cl_recip_suitable (uintL m, uintL n) // m > n
{ if (n < 900)
return cl_false;
else
if (n < 2200)
return (cl_boolean)((m >= n+50) && (m < 2*n-600));
else
return (cl_boolean)(m >= n+30);
}
#else
// Use the old default values from CLN version <= 1.0.3 as a crude estimate.
// They came from the timings for dividing m digits by n digits on an i486/33:
// Dividing 2*N digits by N digits: Dividing 3*N digits by N digits:
// N standard Newton standard Newton
// 10 0.0003 0.0012 0.0006 0.0025
// 25 0.0013 0.0044 0.0026 0.0103
// 50 0.0047 0.0125 0.0092 0.030
// 100 0.017 0.037 0.035 0.089
// 250 0.108 0.146 0.215 0.362
// 500 0.43 0.44 <-(~550) 0.85 1.10
// 1000 1.72 1.32 3.44 3.21 <-(~740)
// 2500 11.2 4.1 23.3 7.9
// 5000 44.3 9.5 89.0 15.6
// 10000 187 20.6 362 33.1
// Time for dividing m digits by n digits:
// n = 2,3,5,10,25,50,100,250: Newton never faster.
// n = 400: Newton faster for m >= 440, m < 600
// n = 500: Newton faster for m >= 530, m < 900
// n = 600: Newton faster for m >= 630, m < 1250
// n = 700: Newton faster for m >= 730, m < 1530
// n = 800: Newton faster for m >= 825, m < 2600 or m >= 5300
// n = 900: Newton faster for m >= 925, m < 2700 or m >= 3400
// n = 1000: Newton faster for m >= 1020
// n = 1500: Newton faster for m >= 1520
// n = 2000: Newton faster for m >= 2020
// n = 2500: Newton faster for m >= 2520
// n = 5000: Newton faster for m >= 5020
static inline cl_boolean cl_recip_suitable (uintL m, uintL n) // m > n
{ if (n < 500)
return cl_false;
else
if (n < 1000)
return (cl_boolean)((m >= n+30) && (m < 3*n-600));
else
return (cl_boolean)(m >= n+20);
}
#endif
// Dividiert zwei Unsigned Digit sequences durcheinander.
// UDS_divide(a_MSDptr,a_len,a_LSDptr, b_MSDptr,b_len,b_LSDptr, &q,&r);
// Die UDS a = a_MSDptr/a_len/a_LSDptr (a>=0) wird durch
// die UDS b = b_MSDptr/b_len/b_LSDptr (b>=0) dividiert:
// a = q * b + r mit 0 <= r < b. Bei b=0 Error.
// q der Quotient, r der Rest.
// q = q_MSDptr/q_len/q_LSDptr, r = r_MSDptr/r_len/r_LSDptr beides
// Normalized Unsigned Digit sequences.
// Vorsicht: q_LSDptr <= r_MSDptr,
// Vorzeichenerweiterung von r kann q zerstören!
// Vorzeichenerweiterung von q ist erlaubt.
// a und b werden nicht modifiziert.
//
// Methode:
// erst a und b normalisieren: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]]
// mit m>=0 und n>0 (Stellensystem der Basis beta=2^intDsize).
// Falls m<n, ist q:=0 und r:=a.
// Falls m>=n=1, Single-Precision-Division:
// r:=0, j:=m,
// while j>0 do
// {Hier (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j =
// = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta}
// j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j].
// Normalisiere [q[m-1],...,q[0]], liefert q.
// Falls m>=n>1, Multiple-Precision-Division:
// Es gilt a/b < beta^(m-n+1).
// s:=intDsize-1-(Nummer des höchsten Bits in b[n-1]), 0<=s<intDsize.
// Schiebe a und b um s Bits nach links und kopiere sie dabei. r:=a.
// r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] mit b[n-1]>=beta/2.
// Für j=m-n,...,0: {Hier 0 <= r < b*beta^(j+1).}
// Berechne q* :
// q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]).
// Bei Überlauf (q* >= beta) setze q* := beta-1.
// Berechne c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2]
// und c3 := b[n-2] * q*.
// {Es ist 0 <= c2 < 2*beta^2, sogar 0 <= c2 < beta^2 falls kein
// Überlauf aufgetreten war. Ferner 0 <= c3 < beta^2.
// Bei Überlauf und r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta,
// das heißt c2 >= beta^2, kann man die nächste Abfrage überspringen.}
// Solange c3 > c2, {hier 0 <= c2 < c3 < beta^2} setze
// q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2].
// Falls q* > 0:
// Setze r := r - b * q* * beta^j, im einzelnen:
// [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]].
// also: u:=0, for i:=0 to n-1 do
// u := u + q* * b[i],
// r[j+i]:=r[j+i]-(u mod beta) (+ beta, falls Carry),
// u:=u div beta (+ 1, falls bei der Subtraktion Carry)
// r[n+j]:=r[n+j]-u.
// {Da stets u = (q* * [b[i-1],...,b[0]] div beta^i) + 1
// < q* + 1 <= beta, läuft der Übertrag u nicht über.}
// Tritt dabei ein negativer Übertrag auf, so setze q* := q* - 1
// und [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]].
// Setze q[j] := q*.
// Normalisiere [q[m-n],..,q[0]] und erhalte den Quotienten q,
// Schiebe [r[n-1],...,r[0]] um s Bits nach rechts, normalisiere und
// erhalte den Rest r.
// Dabei kann q[j] auf dem Platz von r[n+j] liegen.
void cl_UDS_divide (const uintD* a_MSDptr, uintC a_len, const uintD* a_LSDptr,
const uintD* b_MSDptr, uintC b_len, const uintD* b_LSDptr,
uintD* roomptr, // ab roomptr kommen a_len+1 freie Digits
DS* q_, DS* r_)
{ // a normalisieren (a_MSDptr erhöhen, a_len erniedrigen):
while ((a_len>0) && (mspref(a_MSDptr,0)==0)) { msshrink(a_MSDptr); a_len--; }
// b normalisieren (b_MSDptr erhöhen, b_len erniedrigen):
loop
{ if (b_len==0) { cl_error_division_by_0(); }
if (mspref(b_MSDptr,0)==0) { msshrink(b_MSDptr); b_len--; }
else break;
}
// jetzt m=a_len >=0 und n=b_len >0.
if (a_len < b_len)
// m<n: Trivialfall, q=0, r:= Kopie von a.
{ var uintD* r_MSDptr = roomptr;
var uintD* r_LSDptr = roomptr mspop a_len;
// Speicheraufbau: r_MSDptr/0/r_MSDptr/a_len/r_LSDptr
// | q | r |
copy_loop_lsp(a_LSDptr,r_LSDptr,a_len);
q_->MSDptr = r_MSDptr; q_->len = 0; q_->LSDptr = r_MSDptr; // q = 0, eine NUDS
r_->MSDptr = r_MSDptr; r_->len = a_len; r_->LSDptr = r_LSDptr; // r = Kopie von a, eine NUDS
return;
}
elif (b_len==1)
// n=1: Single-Precision-Division
{ // beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m
var uintD* q_MSDptr = roomptr;
var uintD* q_LSDptr = q_MSDptr mspop a_len;
var uintD* r_MSDptr = q_LSDptr;
var uintD* r_LSDptr = r_MSDptr mspop 1;
// Speicheraufbau: q_MSDptr/a_len/q_LSDptr r_MSDptr/1/r_LSDptr
// | q | | r |
{var uintD rest = divucopy_loop_msp(mspref(b_MSDptr,0),a_MSDptr,q_MSDptr,a_len); // Division durch b[0]
var uintC r_len;
if (!(rest==0))
{ mspref(r_MSDptr,0) = rest; r_len=1; } // Rest als r ablegen
else
{ r_MSDptr = r_LSDptr; r_len=0; } // Rest auf 0 normalisieren
if (mspref(q_MSDptr,0)==0)
{ msshrink(q_MSDptr); a_len--; } // q normalisieren
q_->MSDptr = q_MSDptr; q_->len = a_len; q_->LSDptr = q_LSDptr; // q ablegen
r_->MSDptr = r_MSDptr; r_->len = r_len; r_->LSDptr = r_LSDptr; // r ablegen
return;
}}
else
// n>1: Multiple-Precision-Division
{ // beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==>
// beta^(m-n-1) <= a/b < beta^(m-n+1).
var uintL s;
CL_ALLOCA_STACK;
// s bestimmen:
{ var uintD msd = mspref(b_MSDptr,0); // b[n-1]
#if 0
s = 0;
while ((sintD)msd >= 0) { msd = msd<<1; s++; }
#else // ein wenig effizienter, Abfrage auf s=0 vorwegnehmen
if ((sintD)msd < 0)
{ s = 0; goto shift_ok; }
else
{ integerlengthD(msd, s = intDsize - ); goto shift; }
#endif
}
// 0 <= s < intDsize.
// Kopiere b und schiebe es dabei um s Bits nach links:
if (!(s==0))
shift:
{ var uintD* new_b_MSDptr;
var uintD* new_b_LSDptr;
num_stack_alloc(b_len,new_b_MSDptr=,new_b_LSDptr=);
shiftleftcopy_loop_lsp(b_LSDptr,new_b_LSDptr,b_len,s);
b_MSDptr = new_b_MSDptr; b_LSDptr = new_b_LSDptr;
}
shift_ok:
// Wieder b = b_MSDptr/b_len/b_LSDptr.
// Kopiere a und schiebe es dabei um s Bits nach links, erhalte r:
{var uintD* r_MSDptr = roomptr;
var uintD* r_LSDptr = roomptr mspop (a_len+1);
// Speicheraufbau: r_MSDptr/ a_len+1 /r_LSDptr
// | r |
// später: q_MSDptr/a_len-b_len+1/r_MSDptr/b_len/r_LSDptr
// | q | r |
if (s==0)
{ copy_loop_lsp(a_LSDptr,r_LSDptr,a_len); mspref(r_MSDptr,0) = 0; }
else
{ mspref(r_MSDptr,0) = shiftleftcopy_loop_lsp(a_LSDptr,r_LSDptr,a_len,s); }
// Nun r = r_MSDptr/a_len+1/r_LSDptr.
var uintC j = a_len-b_len; // m-n
var uintD* q_MSDptr = r_MSDptr;
var uintC q_len = j+1; // q wird m-n+1 Digits haben
if (cl_recip_suitable(a_len,b_len))
{ // Bestimme Kehrwert c von b.
var uintD* c_MSDptr;
var uintD* c_LSDptr;
num_stack_alloc(j+3,c_MSDptr=,c_LSDptr=);
cl_UDS_recip(b_MSDptr,b_len,c_MSDptr,j+1);
// c hat j+3 Digits, | beta^(m+2)/b - c | < beta.
// Mit a' = floor(a/beta^n) multiplizieren, liefert d':
var uintD* d_MSDptr;
UDS_UDS_mul_UDS(j+1,r_MSDptr mspop (j+1), j+3,c_MSDptr mspop (j+3),
d_MSDptr=,,);
// d' has 2*j+4 digits, d := floor(d'/beta^(j+2)) has j+2 digits.
// | beta^(m+2)/b - c | < beta ==> (since a < beta^(m+1))
// | beta^(m+2)*a/b - a*c | < beta^(m+2),
// 0 <= a - a'*beta^n < beta^n ==> (since c <= 2*beta^(j+2))
// 0 <= a*c - a'*c*beta^n < 2*beta^(m+2) ==>
// -beta^(m+2) < beta^(m+2)*a/b - a'*c*beta^n < 3*beta^(m+2) ==>
// -1 < a/b - a'*c*beta^(-j-2) < 3 ==>
// -1 < a/b - d'*beta^(-j-2) < 3,
// -1 < d'*beta^(-j-2) - d <= 0 ==>
// -2 < a/b - d < 3 ==>
// -2 <= q - d < 3 ==> |q-d| <= 2.
var uintD* d_LSDptr = d_MSDptr mspop (j+2);
// Zur Bestimmung des Restes wieder mit b multiplizieren:
var uintD* p_MSDptr;
var uintD* p_LSDptr;
UDS_UDS_mul_UDS(j+2,d_LSDptr, b_len,b_LSDptr, p_MSDptr=,,p_LSDptr=);
// d ist um höchstens 2 zu groß, muß also evtl. zweimal um 1
// decrementieren, bis das Produkt <= a wird.
if ((mspref(p_MSDptr,0) > 0) || (compare_loop_msp(p_MSDptr mspop 1,r_MSDptr,a_len+1) > 0))
{ dec_loop_lsp(d_LSDptr,j+2);
if (subfrom_loop_lsp(b_LSDptr,p_LSDptr,b_len))
dec_loop_lsp(p_LSDptr lspop b_len,j+2);
if ((mspref(p_MSDptr,0) > 0) || (compare_loop_msp(p_MSDptr mspop 1,r_MSDptr,a_len+1) > 0))
{ dec_loop_lsp(d_LSDptr,j+2);
if (subfrom_loop_lsp(b_LSDptr,p_LSDptr,b_len))
dec_loop_lsp(p_LSDptr lspop b_len,j+2);
if ((mspref(p_MSDptr,0) > 0) || (compare_loop_msp(p_MSDptr mspop 1,r_MSDptr,a_len+1) > 0))
cl_abort();
} }
// Rest bestimmen:
subfrom_loop_lsp(p_LSDptr,r_LSDptr,a_len+1);
if (test_loop_msp(r_MSDptr,j)) cl_abort();
r_MSDptr = r_LSDptr lspop b_len; // = r_MSDptr mspop (j+1);
// d ist um höchstens 2 zu klein, muß also evtl. zweimal um 1
// incrementieren, bis der Rest < b wird.
if ((lspref(r_MSDptr,0) > 0) || (compare_loop_msp(r_MSDptr,b_MSDptr,b_len) >= 0))
{ inc_loop_lsp(d_LSDptr,j+2);
if (subfrom_loop_lsp(b_LSDptr,r_LSDptr,b_len))
lspref(r_LSDptr,b_len) -= 1;
if ((lspref(r_MSDptr,0) > 0) || (compare_loop_msp(r_MSDptr,b_MSDptr,b_len) >= 0))
{ inc_loop_lsp(d_LSDptr,j+2);
if (subfrom_loop_lsp(b_LSDptr,r_LSDptr,b_len))
lspref(r_LSDptr,b_len) -= 1;
if ((lspref(r_MSDptr,0) > 0) || (compare_loop_msp(r_MSDptr,b_MSDptr,b_len) >= 0))
cl_abort();
} }
// r ist fertig, q := d.
if (mspref(d_MSDptr,0) > 0) cl_abort();
q_len = j+1; copy_loop_msp(d_MSDptr mspop 1,q_MSDptr,q_len);
}
else
{ var uintD* r_ptr = r_LSDptr lspop j; // Pointer oberhalb von r[j]
j = j+1;
var uintD b_msd = mspref(b_MSDptr,0); // b[n-1]
var uintD b_2msd = mspref(b_MSDptr,1); // b[n-2]
#if HAVE_DD
var uintDD b_msdd = highlowDD(b_msd,b_2msd); // b[n-1]*beta+b[n-2]
#endif
// Divisions-Schleife: (wird m-n+1 mal durchlaufen)
// j = Herabzähler, b_MSDptr/b_len/b_LSDptr = [b[n-1],...,b[0]], b_len=n,
// r_MSDptr = Pointer auf r[n+j] = Pointer auf q[j],
// r_ptr = Pointer oberhalb von r[j].
do { var uintD q_stern;
var uintD c1;
if (mspref(r_MSDptr,0) < b_msd) // r[j+n] < b[n-1] ?
{ // Dividiere r[j+n]*beta+r[j+n-1] durch b[n-1], ohne Überlauf:
#if HAVE_DD
divuD(highlowDD(mspref(r_MSDptr,0),mspref(r_MSDptr,1)),b_msd, q_stern=,c1=);
#else
divuD(mspref(r_MSDptr,0),mspref(r_MSDptr,1),b_msd, q_stern=,c1=);
#endif
}
else
{ // Überlauf, also r[j+n]*beta+r[j+n-1] >= beta*b[n-1]
q_stern = bitm(intDsize)-1; // q* = beta-1
// Teste ob r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta
// <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta
// <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) {<= beta !} ist.
// Wenn ja, direkt zur Subtraktionschleife.
// (Andernfalls ist r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta
// <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ).
if ((mspref(r_MSDptr,0) > b_msd) || ((c1 = mspref(r_MSDptr,1)+b_msd) < b_msd))
// r[j+n] >= b[n-1]+1 oder
// r[j+n] = b[n-1] und Addition r[j+n-1]+b[n-1] gibt Carry ?
{ goto subtract; } // ja -> direkt in die Subtraktion
}
// q_stern = q*,
// c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta).
#if HAVE_DD
{ var uintDD c2 = highlowDD(c1,mspref(r_MSDptr,2)); // c1*beta+r[j+n-2]
var uintDD c3 = muluD(b_2msd,q_stern); // b[n-2] * q*
// Solange c2 < c3, c2 erhöhen, c3 erniedrigen:
// Rechne dabei mit c3-c2:
// solange >0, um b[n-1]*beta+b[n-2] erniedrigen.
// Dies kann wegen b[n-1]*beta+b[n-2] >= beta^2/2
// höchstens zwei mal auftreten.
if (c3 > c2)
{ q_stern = q_stern-1; // q* := q* - 1
if (c3-c2 > b_msdd)
{ q_stern = q_stern-1; } // q* := q* - 1
} }
#else
// Wie oben, nur mit zweigeteilten c2=[c2hi|c2lo] und c3=[c3hi|c3lo]:
#define c2hi c1
{ var uintD c2lo = mspref(r_MSDptr,2); // c2hi*beta+c2lo = c1*beta+r[j+n-2]
var uintD c3hi;
var uintD c3lo;
muluD(b_2msd,q_stern, c3hi=,c3lo=); // c3hi*beta+c3lo = b[n-2] * q*
if ((c3hi > c2hi) || ((c3hi == c2hi) && (c3lo > c2lo)))
{ q_stern = q_stern-1; // q* := q* - 1
c3hi -= c2hi; if (c3lo < c2lo) { c3hi--; }; c3lo -= c2lo; // c3 := c3-c2
if ((c3hi > b_msd) || ((c3hi == b_msd) && (c3lo > b_2msd)))
{ q_stern = q_stern-1; } // q* := q* - 1
} }
#undef c2hi
#endif
if (!(q_stern==0))
subtract:
{ // Subtraktionsschleife: r := r - b * q* * beta^j
var uintD carry = mulusub_loop_lsp(q_stern,b_LSDptr,r_ptr,b_len);
// Noch r_ptr[-b_len-1] -= carry, d.h. r_MSDptr[0] -= carry
// durchführen und danach r_MSDptr[0] vergessen:
if (carry > mspref(r_MSDptr,0))
// Subtraktion ergab Übertrag
{ q_stern = q_stern-1; // q* := q* - 1
addto_loop_lsp(b_LSDptr,r_ptr,b_len); // Additionsschleife
// r[n+j] samt Carry kann vergessen werden...
} }
// Berechnung von q* ist fertig.
msprefnext(r_MSDptr) = q_stern; // als q[j] ablegen
r_ptr = r_ptr mspop 1;
}
until (--j == 0);
}
// Nun ist q = [q[m-n],..,q[0]] = q_MSDptr/q_len/r_MSDptr
// und r = [r[n-1],...,r[0]] = r_MSDptr/b_len/r_LSDptr.
// q normalisieren und ablegen:
if (mspref(q_MSDptr,0)==0)
{ msshrink(q_MSDptr); q_len--; }
q_->MSDptr = q_MSDptr; q_->len = q_len; q_->LSDptr = r_MSDptr;
// Schiebe [r[n-1],...,r[0]] um s Bits nach rechts:
if (!(s==0))
{ shiftright_loop_msp(r_MSDptr,b_len,s); }
// r normalisieren und ablegen:
while ((b_len>0) && (mspref(r_MSDptr,0)==0))
{ msshrink(r_MSDptr); b_len--; }
r_->MSDptr = r_MSDptr; r_->len = b_len; r_->LSDptr = r_LSDptr;
return;
}}
}
// Bit complexity (N = a_len): O(M(N)).
} // namespace cln