You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2017 lines
						
					
					
						
							61 KiB
						
					
					
				
			
		
		
		
			
			
			
				
					
				
				
					
				
			
		
		
	
	
							2017 lines
						
					
					
						
							61 KiB
						
					
					
				| <HTML> | |
| <HEAD> | |
| <!-- Created by texi2html 1.56k from cln.texi on 19 May 2000 --> | |
| 
 | |
| <TITLE>CLN, a Class Library for Numbers - 4. Functions on numbers</TITLE> | |
| </HEAD> | |
| <BODY> | |
| Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_3.html">previous</A>, <A HREF="cln_5.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. | |
| <P><HR><P> | |
| 
 | |
| 
 | |
| <H1><A NAME="SEC16" HREF="cln_toc.html#TOC16">4. Functions on numbers</A></H1> | |
| 
 | |
| <P> | |
| Each of the number classes declares its mathematical operations in the | |
| corresponding include file. For example, if your code operates with | |
| objects of type <CODE>cl_I</CODE>, it should <CODE>#include <cl_integer.h></CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC17" HREF="cln_toc.html#TOC17">4.1 Constructing numbers</A></H2> | |
| 
 | |
| <P> | |
| Here is how to create number objects "from nothing". | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC18" HREF="cln_toc.html#TOC18">4.1.1 Constructing integers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_I</CODE> objects are most easily constructed from C integers and from | |
| strings. See section <A HREF="cln_3.html#SEC15">3.4 Conversions</A>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC19" HREF="cln_toc.html#TOC19">4.1.2 Constructing rational numbers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_RA</CODE> objects can be constructed from strings. The syntax | |
| for rational numbers is described in section <A HREF="cln_5.html#SEC45">5.1 Internal and printed representation</A>. | |
| Another standard way to produce a rational number is through application | |
| of <SAMP>`operator /'</SAMP> or <SAMP>`recip'</SAMP> on integers. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC20" HREF="cln_toc.html#TOC20">4.1.3 Constructing floating-point numbers</A></H3> | |
| 
 | |
| <P> | |
| <CODE>cl_F</CODE> objects with low precision are most easily constructed from | |
| C <SAMP>`float'</SAMP> and <SAMP>`double'</SAMP>. See section <A HREF="cln_3.html#SEC15">3.4 Conversions</A>. | |
| 
 | |
| 
 | |
| <P> | |
| To construct a <CODE>cl_F</CODE> with high precision, you can use the conversion | |
| from <SAMP>`const char *'</SAMP>, but you have to specify the desired precision | |
| within the string. (See section <A HREF="cln_5.html#SEC45">5.1 Internal and printed representation</A>.) | |
| Example: | |
| 
 | |
| <PRE> | |
|    cl_F e = "0.271828182845904523536028747135266249775724709369996e+1_40"; | |
| </PRE> | |
| 
 | |
| <P> | |
| will set <SAMP>`e'</SAMP> to the given value, with a precision of 40 decimal digits. | |
| 
 | |
| 
 | |
| <P> | |
| The programmatic way to construct a <CODE>cl_F</CODE> with high precision is | |
| through the <CODE>cl_float</CODE> conversion function, see | |
| section <A HREF="cln_4.html#SEC40">4.11.1 Conversion to floating-point numbers</A>. For example, to compute | |
| <CODE>e</CODE> to 40 decimal places, first construct 1.0 to 40 decimal places | |
| and then apply the exponential function: | |
| 
 | |
| <PRE> | |
|    cl_float_format_t precision = cl_float_format(40); | |
|    cl_F e = exp(cl_float(1,precision)); | |
| </PRE> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC21" HREF="cln_toc.html#TOC21">4.1.4 Constructing complex numbers</A></H3> | |
| 
 | |
| <P> | |
| Non-real <CODE>cl_N</CODE> objects are normally constructed through the function | |
| 
 | |
| <PRE> | |
|    cl_N complex (const cl_R& realpart, const cl_R& imagpart) | |
| </PRE> | |
| 
 | |
| <P> | |
| See section <A HREF="cln_4.html#SEC24">4.4 Elementary complex functions</A>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC22" HREF="cln_toc.html#TOC22">4.2 Elementary functions</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator + (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX36"></A> | |
| Addition. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX37"></A> | |
| Subtraction. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator - (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| Returns the negative of the argument. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> plus1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX38"></A> | |
| Returns <CODE>x + 1</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> minus1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX39"></A> | |
| Returns <CODE>x - 1</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator * (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX40"></A> | |
| Multiplication. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> square (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX41"></A> | |
| Returns <CODE>x * x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> operator / (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX42"></A> | |
| Division. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> recip (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX43"></A> | |
| Returns the reciprocal of the argument. | |
| </DL> | |
| 
 | |
| <P> | |
| The class <CODE>cl_I</CODE> doesn't define a <SAMP>`/'</SAMP> operation because | |
| in the C/C++ language this operator, applied to integral types, | |
| denotes the <SAMP>`floor'</SAMP> or <SAMP>`truncate'</SAMP> operation (which one of these, | |
| is implementation dependent). (See section <A HREF="cln_4.html#SEC26">4.6 Rounding functions</A>.) | |
| Instead, <CODE>cl_I</CODE> defines an "exact quotient" function: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I exquo (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX44"></A> | |
| Checks that <CODE>y</CODE> divides <CODE>x</CODE>, and returns the quotient <CODE>x</CODE>/<CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following exponentiation functions are defined: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I expt_pos (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX45"></A> | |
| <DT><CODE>cl_RA expt_pos (const cl_RA& x, const cl_I& y)</CODE> | |
| <DD> | |
| <CODE>y</CODE> must be > 0. Returns <CODE>x^y</CODE>. | |
| 
 | |
| <DT><CODE>cl_RA expt (const cl_RA& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX46"></A> | |
| <DT><CODE>cl_R expt (const cl_R& x, const cl_I& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_N expt (const cl_N& x, const cl_I& y)</CODE> | |
| <DD> | |
| Returns <CODE>x^y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> abs (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX47"></A> | |
| Returns the absolute value of <CODE>x</CODE>. | |
| This is <CODE>x</CODE> if <CODE>x >= 0</CODE>, and <CODE>-x</CODE> if <CODE>x <= 0</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The class <CODE>cl_N</CODE> implements this as follows: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R abs (const cl_N x)</CODE> | |
| <DD> | |
| Returns the absolute value of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> signum (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX48"></A> | |
| Returns the sign of <CODE>x</CODE>, in the same number format as <CODE>x</CODE>. | |
| This is defined as <CODE>x / abs(x)</CODE> if <CODE>x</CODE> is non-zero, and | |
| <CODE>x</CODE> if <CODE>x</CODE> is zero. If <CODE>x</CODE> is real, the value is either | |
| 0 or 1 or -1. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC23" HREF="cln_toc.html#TOC23">4.3 Elementary rational functions</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I numerator (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX49"></A> | |
| Returns the numerator of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_I denominator (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX50"></A> | |
| Returns the denominator of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The numerator and denominator of a rational number are normalized in such | |
| a way that they have no factor in common and the denominator is positive. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC24" HREF="cln_toc.html#TOC24">4.4 Elementary complex functions</A></H2> | |
| 
 | |
| <P> | |
| The class <CODE>cl_N</CODE> defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_N complex (const cl_R& a, const cl_R& b)</CODE> | |
| <DD> | |
| <A NAME="IDX51"></A> | |
| Returns the complex number <CODE>a+bi</CODE>, that is, the complex number with | |
| real part <CODE>a</CODE> and imaginary part <CODE>b</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R realpart (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX52"></A> | |
| Returns the real part of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_R imagpart (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX53"></A> | |
| Returns the imaginary part of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> conjugate (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX54"></A> | |
| Returns the complex conjugate of <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| We have the relations | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>x = complex(realpart(x), imagpart(x))</CODE> | |
| <LI> | |
| 
 | |
| <CODE>conjugate(x) = complex(realpart(x), -imagpart(x))</CODE> | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC25" HREF="cln_toc.html#TOC25">4.5 Comparisons</A></H2> | |
| <P> | |
| <A NAME="IDX55"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>bool operator == (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX56"></A> | |
| <DT><CODE>bool operator != (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX57"></A> | |
| Comparison, as in C and C++. | |
| 
 | |
| <DT><CODE>uint32 cl_equal_hashcode (const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX58"></A> | |
| Returns a 32-bit hash code that is the same for any two numbers which are | |
| the same according to <CODE>==</CODE>. This hash code depends on the number's value, | |
| not its type or precision. | |
| 
 | |
| <DT><CODE>cl_boolean zerop (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX59"></A> | |
| Compare against zero: <CODE>x == 0</CODE> | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_signean cl_compare (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX60"></A> | |
| Compares <CODE>x</CODE> and <CODE>y</CODE>. Returns +1 if <CODE>x</CODE>><CODE>y</CODE>, | |
| -1 if <CODE>x</CODE><<CODE>y</CODE>, 0 if <CODE>x</CODE>=<CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>bool operator <= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX61"></A> | |
| <DT><CODE>bool operator < (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX62"></A> | |
| <DT><CODE>bool operator >= (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX63"></A> | |
| <DT><CODE>bool operator > (const <VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX64"></A> | |
| Comparison, as in C and C++. | |
| 
 | |
| <DT><CODE>cl_boolean minusp (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX65"></A> | |
| Compare against zero: <CODE>x < 0</CODE> | |
| 
 | |
| <DT><CODE>cl_boolean plusp (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX66"></A> | |
| Compare against zero: <CODE>x > 0</CODE> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> max (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX67"></A> | |
| Return the maximum of <CODE>x</CODE> and <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> min (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX68"></A> | |
| Return the minimum of <CODE>x</CODE> and <CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| When a floating point number and a rational number are compared, the float | |
| is first converted to a rational number using the function <CODE>rational</CODE>. | |
| Since a floating point number actually represents an interval of real numbers, | |
| the result might be surprising. | |
| For example, <CODE>(cl_F)(cl_R)"1/3" == (cl_R)"1/3"</CODE> returns false because | |
| there is no floating point number whose value is exactly <CODE>1/3</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC26" HREF="cln_toc.html#TOC26">4.6 Rounding functions</A></H2> | |
| <P> | |
| <A NAME="IDX69"></A> | |
| 
 | |
| 
 | |
| <P> | |
| When a real number is to be converted to an integer, there is no "best" | |
| rounding. The desired rounding function depends on the application. | |
| The Common Lisp and ISO Lisp standards offer four rounding functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>floor(x)</CODE> | |
| <DD> | |
| This is the largest integer <=<CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>ceiling(x)</CODE> | |
| <DD> | |
| This is the smallest integer >=<CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>truncate(x)</CODE> | |
| <DD> | |
| Among the integers between 0 and <CODE>x</CODE> (inclusive) the one nearest to <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>round(x)</CODE> | |
| <DD> | |
| The integer nearest to <CODE>x</CODE>. If <CODE>x</CODE> is exactly halfway between two | |
| integers, choose the even one. | |
| </DL> | |
| 
 | |
| <P> | |
| These functions have different advantages: | |
| 
 | |
| 
 | |
| <P> | |
| <CODE>floor</CODE> and <CODE>ceiling</CODE> are translation invariant: | |
| <CODE>floor(x+n) = floor(x) + n</CODE> and <CODE>ceiling(x+n) = ceiling(x) + n</CODE> | |
| for every <CODE>x</CODE> and every integer <CODE>n</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| On the other hand, <CODE>truncate</CODE> and <CODE>round</CODE> are symmetric: | |
| <CODE>truncate(-x) = -truncate(x)</CODE> and <CODE>round(-x) = -round(x)</CODE>, | |
| and furthermore <CODE>round</CODE> is unbiased: on the "average", it rounds | |
| down exactly as often as it rounds up. | |
| 
 | |
| 
 | |
| <P> | |
| The functions are related like this: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>ceiling(m/n) = floor((m+n-1)/n) = floor((m-1)/n)+1</CODE> | |
| for rational numbers <CODE>m/n</CODE> (<CODE>m</CODE>, <CODE>n</CODE> integers, <CODE>n</CODE>>0), and | |
| <LI> | |
| 
 | |
| <CODE>truncate(x) = sign(x) * floor(abs(x))</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX70"></A> | |
| Returns <CODE>floor(x)</CODE>. | |
| <DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX71"></A> | |
| Returns <CODE>ceiling(x)</CODE>. | |
| <DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX72"></A> | |
| Returns <CODE>truncate(x)</CODE>. | |
| <DT><CODE>cl_I round1 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX73"></A> | |
| Returns <CODE>round(x)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I floor1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>floor(x/y)</CODE>. | |
| <DT><CODE>cl_I ceiling1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>ceiling(x/y)</CODE>. | |
| <DT><CODE>cl_I truncate1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>truncate(x/y)</CODE>. | |
| <DT><CODE>cl_I round1 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| Returns <CODE>round(x/y)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| These functions are called <SAMP>`floor1'</SAMP>, ... here instead of | |
| <SAMP>`floor'</SAMP>, ..., because on some systems, system dependent include | |
| files define <SAMP>`floor'</SAMP> and <SAMP>`ceiling'</SAMP> as macros. | |
| 
 | |
| 
 | |
| <P> | |
| In many cases, one needs both the quotient and the remainder of a division. | |
| It is more efficient to compute both at the same time than to perform | |
| two divisions, one for quotient and the next one for the remainder. | |
| The following functions therefore return a structure containing both | |
| the quotient and the remainder. The suffix <SAMP>`2'</SAMP> indicates the number | |
| of "return values". The remainder is defined as follows: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| for the computation of <CODE>quotient = floor(x)</CODE>, | |
| <CODE>remainder = x - quotient</CODE>, | |
| <LI> | |
| 
 | |
| for the computation of <CODE>quotient = floor(x,y)</CODE>, | |
| <CODE>remainder = x - quotient*y</CODE>, | |
| </UL> | |
| 
 | |
| <P> | |
| and similarly for the other three operations. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_div_t { cl_I quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_div_t floor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX74"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t ceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX75"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t truncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX76"></A> | |
| <DT><CODE><VAR>type</VAR>_div_t round2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX77"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| Sometimes, one wants the quotient as a floating-point number (of the | |
| same format as the argument, if the argument is a float) instead of as | |
| an integer. The prefix <SAMP>`f'</SAMP> indicates this. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> ffloor (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX78"></A> | |
| <DT><CODE><VAR>type</VAR> fceiling (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX79"></A> | |
| <DT><CODE><VAR>type</VAR> ftruncate (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX80"></A> | |
| <DT><CODE><VAR>type</VAR> fround (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX81"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| and similarly for class <CODE>cl_R</CODE>, but with return type <CODE>cl_F</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| The class <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F ffloor (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F fceiling (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F ftruncate (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F fround (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| These functions also exist in versions which return both the quotient | |
| and the remainder. The suffix <SAMP>`2'</SAMP> indicates this. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations: | |
| <A NAME="IDX82"></A> | |
| <A NAME="IDX83"></A> | |
| <A NAME="IDX84"></A> | |
| <A NAME="IDX85"></A> | |
| <A NAME="IDX86"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_fdiv_t { <VAR>type</VAR> quotient; <VAR>type</VAR> remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX87"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX88"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX89"></A> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX90"></A> | |
| </DL> | |
| <P> | |
| and similarly for class <CODE>cl_R</CODE>, but with quotient type <CODE>cl_F</CODE>. | |
| <A NAME="IDX91"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The class <CODE>cl_R</CODE> defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>struct <VAR>type</VAR>_fdiv_t { cl_F quotient; cl_R remainder; };</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ffloor2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fceiling2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t ftruncate2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>_fdiv_t fround2 (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| </DL> | |
| 
 | |
| <P> | |
| Other applications need only the remainder of a division. | |
| The remainder of <SAMP>`floor'</SAMP> and <SAMP>`ffloor'</SAMP> is called <SAMP>`mod'</SAMP> | |
| (abbreviation of "modulo"). The remainder <SAMP>`truncate'</SAMP> and | |
| <SAMP>`ftruncate'</SAMP> is called <SAMP>`rem'</SAMP> (abbreviation of "remainder"). | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>mod(x,y) = floor2(x,y).remainder = x - floor(x/y)*y</CODE> | |
| <LI> | |
| 
 | |
| <CODE>rem(x,y) = truncate2(x,y).remainder = x - truncate(x/y)*y</CODE> | |
| </UL> | |
| 
 | |
| <P> | |
| If <CODE>x</CODE> and <CODE>y</CODE> are both >= 0, <CODE>mod(x,y) = rem(x,y) >= 0</CODE>. | |
| In general, <CODE>mod(x,y)</CODE> has the sign of <CODE>y</CODE> or is zero, | |
| and <CODE>rem(x,y)</CODE> has the sign of <CODE>x</CODE> or is zero. | |
| 
 | |
| 
 | |
| <P> | |
| The classes <CODE>cl_R</CODE>, <CODE>cl_I</CODE> define the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> mod (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX92"></A> | |
| <DT><CODE><VAR>type</VAR> rem (const <VAR>type</VAR>& x, const <VAR>type</VAR>& y)</CODE> | |
| <DD> | |
| <A NAME="IDX93"></A> | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC27" HREF="cln_toc.html#TOC27">4.7 Roots</A></H2> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> sqrt (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX94"></A> | |
| <CODE>x</CODE> must be >= 0. This function returns the square root of <CODE>x</CODE>, | |
| normalized to be >= 0. If <CODE>x</CODE> is the square of a rational number, | |
| <CODE>sqrt(x)</CODE> will be a rational number, else it will return a | |
| floating-point approximation. | |
| </DL> | |
| 
 | |
| <P> | |
| The classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> define the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean sqrtp (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX95"></A> | |
| This tests whether <CODE>x</CODE> is a perfect square. If so, it returns true | |
| and the exact square root in <CODE>*root</CODE>, else it returns false. | |
| </DL> | |
| 
 | |
| <P> | |
| Furthermore, for integers, similarly: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean isqrt (const <VAR>type</VAR>& x, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX96"></A> | |
| <CODE>x</CODE> should be >= 0. This function sets <CODE>*root</CODE> to | |
| <CODE>floor(sqrt(x))</CODE> and returns the same value as <CODE>sqrtp</CODE>: | |
| the boolean value <CODE>(expt(*root,2) == x)</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| For <CODE>n</CODE>th roots, the classes <CODE>cl_RA</CODE>, <CODE>cl_I</CODE> | |
| define the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean rootp (const <VAR>type</VAR>& x, const cl_I& n, <VAR>type</VAR>* root)</CODE> | |
| <DD> | |
| <A NAME="IDX97"></A> | |
| <CODE>x</CODE> must be >= 0. <CODE>n</CODE> must be > 0. | |
| This tests whether <CODE>x</CODE> is an <CODE>n</CODE>th power of a rational number. | |
| If so, it returns true and the exact root in <CODE>*root</CODE>, else it returns | |
| false. | |
| </DL> | |
| 
 | |
| <P> | |
| The only square root function which accepts negative numbers is the one | |
| for class <CODE>cl_N</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_N sqrt (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX98"></A> | |
| Returns the square root of <CODE>z</CODE>, as defined by the formula | |
| <CODE>sqrt(z) = exp(log(z)/2)</CODE>. Conversion to a floating-point type | |
| or to a complex number are done if necessary. The range of the result is the | |
| right half plane <CODE>realpart(sqrt(z)) >= 0</CODE> | |
| including the positive imaginary axis and 0, but excluding | |
| the negative imaginary axis. | |
| The result is an exact number only if <CODE>z</CODE> is an exact number. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC28" HREF="cln_toc.html#TOC28">4.8 Transcendental functions</A></H2> | |
| <P> | |
| <A NAME="IDX99"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The transcendental functions return an exact result if the argument | |
| is exact and the result is exact as well. Otherwise they must return | |
| inexact numbers even if the argument is exact. | |
| For example, <CODE>cos(0) = 1</CODE> returns the rational number <CODE>1</CODE>. | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC29" HREF="cln_toc.html#TOC29">4.8.1 Exponential and logarithmic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R exp (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX100"></A> | |
| <DT><CODE>cl_N exp (const cl_N& x)</CODE> | |
| <DD> | |
| Returns the exponential function of <CODE>x</CODE>. This is <CODE>e^x</CODE> where | |
| <CODE>e</CODE> is the base of the natural logarithms. The range of the result | |
| is the entire complex plane excluding 0. | |
| 
 | |
| <DT><CODE>cl_R ln (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX101"></A> | |
| <CODE>x</CODE> must be > 0. Returns the (natural) logarithm of x. | |
| 
 | |
| <DT><CODE>cl_N log (const cl_N& x)</CODE> | |
| <DD> | |
| <A NAME="IDX102"></A> | |
| Returns the (natural) logarithm of x. If <CODE>x</CODE> is real and positive, | |
| this is <CODE>ln(x)</CODE>. In general, <CODE>log(x) = log(abs(x)) + i*phase(x)</CODE>. | |
| The range of the result is the strip in the complex plane | |
| <CODE>-pi < imagpart(log(x)) <= pi</CODE>. | |
| 
 | |
| <DT><CODE>cl_R phase (const cl_N& x)</CODE> | |
| <DD> | |
| <A NAME="IDX103"></A> | |
| Returns the angle part of <CODE>x</CODE> in its polar representation as a | |
| complex number. That is, <CODE>phase(x) = atan(realpart(x),imagpart(x))</CODE>. | |
| This is also the imaginary part of <CODE>log(x)</CODE>. | |
| The range of the result is the interval <CODE>-pi < phase(x) <= pi</CODE>. | |
| The result will be an exact number only if <CODE>zerop(x)</CODE> or | |
| if <CODE>x</CODE> is real and positive. | |
| 
 | |
| <DT><CODE>cl_R log (const cl_R& a, const cl_R& b)</CODE> | |
| <DD> | |
| <CODE>a</CODE> and <CODE>b</CODE> must be > 0. Returns the logarithm of <CODE>a</CODE> with | |
| respect to base <CODE>b</CODE>. <CODE>log(a,b) = ln(a)/ln(b)</CODE>. | |
| The result can be exact only if <CODE>a = 1</CODE> or if <CODE>a</CODE> and <CODE>b</CODE> | |
| are both rational. | |
| 
 | |
| <DT><CODE>cl_N log (const cl_N& a, const cl_N& b)</CODE> | |
| <DD> | |
| Returns the logarithm of <CODE>a</CODE> with respect to base <CODE>b</CODE>. | |
| <CODE>log(a,b) = log(a)/log(b)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N expt (const cl_N& x, const cl_N& y)</CODE> | |
| <DD> | |
| <A NAME="IDX104"></A> | |
| Exponentiation: Returns <CODE>x^y = exp(y*log(x))</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The constant e = exp(1) = 2.71828... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX105"></A> | |
| Returns e as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (const cl_F& y)</CODE> | |
| <DD> | |
| Returns e in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_exp1 (void)</CODE> | |
| <DD> | |
| Returns e as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC30" HREF="cln_toc.html#TOC30">4.8.2 Trigonometric functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R sin (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX106"></A> | |
| Returns <CODE>sin(x)</CODE>. The range of the result is the interval | |
| <CODE>-1 <= sin(x) <= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N sin (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>sin(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>cl_R cos (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX107"></A> | |
| Returns <CODE>cos(x)</CODE>. The range of the result is the interval | |
| <CODE>-1 <= cos(x) <= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cos (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>cos(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>struct cl_cos_sin_t { cl_R cos; cl_R sin; };</CODE> | |
| <DD> | |
| <A NAME="IDX108"></A> | |
| <DT><CODE>cl_cos_sin_t cl_cos_sin (const cl_R& x)</CODE> | |
| <DD> | |
| Returns both <CODE>sin(x)</CODE> and <CODE>cos(x)</CODE>. This is more efficient than | |
| <A NAME="IDX109"></A> | |
| computing them separately. The relation <CODE>cos^2 + sin^2 = 1</CODE> will | |
| hold only approximately. | |
| 
 | |
| <DT><CODE>cl_R tan (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX110"></A> | |
| <DT><CODE>cl_N tan (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>tan(x) = sin(x)/cos(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cis (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX111"></A> | |
| <DT><CODE>cl_N cis (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>exp(i*x)</CODE>. The name <SAMP>`cis'</SAMP> means "cos + i sin", because | |
| <CODE>e^(i*x) = cos(x) + i*sin(x)</CODE>. | |
| 
 | |
| <A NAME="IDX112"></A> | |
| <A NAME="IDX113"></A> | |
| <DT><CODE>cl_N asin (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>arcsin(z)</CODE>. This is defined as | |
| <CODE>arcsin(z) = log(iz+sqrt(1-z^2))/i</CODE> and satisfies | |
| <CODE>arcsin(-z) = -arcsin(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>-pi/2 <= realpart(arcsin(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart < 0</CODE> and the numbers | |
| with <CODE>realpart = pi/2</CODE> and <CODE>imagpart > 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N acos (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX114"></A> | |
| Returns <CODE>arccos(z)</CODE>. This is defined as | |
| <CODE>arccos(z) = pi/2 - arcsin(z) = log(z+i*sqrt(1-z^2))/i</CODE> | |
| and satisfies <CODE>arccos(-z) = pi - arccos(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>0 <= realpart(arcsin(z)) <= pi</CODE>, excluding the numbers | |
| with <CODE>realpart = 0</CODE> and <CODE>imagpart < 0</CODE> and the numbers | |
| with <CODE>realpart = pi</CODE> and <CODE>imagpart > 0</CODE>. | |
| 
 | |
| <A NAME="IDX115"></A> | |
| <A NAME="IDX116"></A> | |
| <DT><CODE>cl_R atan (const cl_R& x, const cl_R& y)</CODE> | |
| <DD> | |
| Returns the angle of the polar representation of the complex number | |
| <CODE>x+iy</CODE>. This is <CODE>atan(y/x)</CODE> if <CODE>x>0</CODE>. The range of | |
| the result is the interval <CODE>-pi < atan(x,y) <= pi</CODE>. The result will | |
| be an exact number only if <CODE>x > 0</CODE> and <CODE>y</CODE> is the exact <CODE>0</CODE>. | |
| WARNING: In Common Lisp, this function is called as <CODE>(atan y x)</CODE>, | |
| with reversed order of arguments. | |
| 
 | |
| <DT><CODE>cl_R atan (const cl_R& x)</CODE> | |
| <DD> | |
| Returns <CODE>arctan(x)</CODE>. This is the same as <CODE>atan(1,x)</CODE>. The range | |
| of the result is the interval <CODE>-pi/2 < atan(x) < pi/2</CODE>. The result | |
| will be an exact number only if <CODE>x</CODE> is the exact <CODE>0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N atan (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>arctan(z)</CODE>. This is defined as | |
| <CODE>arctan(z) = (log(1+iz)-log(1-iz)) / 2i</CODE> and satisfies | |
| <CODE>arctan(-z) = -arctan(z)</CODE>. The range of the result is | |
| the strip in the complex domain | |
| <CODE>-pi/2 <= realpart(arctan(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>realpart = -pi/2</CODE> and <CODE>imagpart >= 0</CODE> and the numbers | |
| with <CODE>realpart = pi/2</CODE> and <CODE>imagpart <= 0</CODE>. | |
| 
 | |
| </DL> | |
| 
 | |
| <P> | |
| <A NAME="IDX117"></A> | |
| <A NAME="IDX118"></A> | |
| Archimedes' constant pi = 3.14... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_pi (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX119"></A> | |
| Returns pi as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_pi (const cl_F& y)</CODE> | |
| <DD> | |
| Returns pi in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_pi (void)</CODE> | |
| <DD> | |
| Returns pi as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC31" HREF="cln_toc.html#TOC31">4.8.3 Hyperbolic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_R sinh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX120"></A> | |
| Returns <CODE>sinh(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N sinh (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>sinh(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>cl_R cosh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX121"></A> | |
| Returns <CODE>cosh(x)</CODE>. The range of the result is the interval | |
| <CODE>cosh(x) >= 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_N cosh (const cl_N& z)</CODE> | |
| <DD> | |
| Returns <CODE>cosh(z)</CODE>. The range of the result is the entire complex plane. | |
| 
 | |
| <DT><CODE>struct cl_cosh_sinh_t { cl_R cosh; cl_R sinh; };</CODE> | |
| <DD> | |
| <A NAME="IDX122"></A> | |
| <DT><CODE>cl_cosh_sinh_t cl_cosh_sinh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX123"></A> | |
| Returns both <CODE>sinh(x)</CODE> and <CODE>cosh(x)</CODE>. This is more efficient than | |
| computing them separately. The relation <CODE>cosh^2 - sinh^2 = 1</CODE> will | |
| hold only approximately. | |
| 
 | |
| <DT><CODE>cl_R tanh (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX124"></A> | |
| <DT><CODE>cl_N tanh (const cl_N& x)</CODE> | |
| <DD> | |
| Returns <CODE>tanh(x) = sinh(x)/cosh(x)</CODE>. | |
| 
 | |
| <DT><CODE>cl_N asinh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX125"></A> | |
| Returns <CODE>arsinh(z)</CODE>. This is defined as | |
| <CODE>arsinh(z) = log(z+sqrt(1+z^2))</CODE> and satisfies | |
| <CODE>arsinh(-z) = -arsinh(z)</CODE>. | |
| The range of the result is the strip in the complex domain | |
| <CODE>-pi/2 <= imagpart(arsinh(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart > 0</CODE> and the numbers | |
| with <CODE>imagpart = pi/2</CODE> and <CODE>realpart < 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N acosh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX126"></A> | |
| Returns <CODE>arcosh(z)</CODE>. This is defined as | |
| <CODE>arcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2))</CODE>. | |
| The range of the result is the half-strip in the complex domain | |
| <CODE>-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0</CODE>, | |
| excluding the numbers with <CODE>realpart = 0</CODE> and <CODE>-pi < imagpart < 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_N atanh (const cl_N& z)</CODE> | |
| <DD> | |
| <A NAME="IDX127"></A> | |
| Returns <CODE>artanh(z)</CODE>. This is defined as | |
| <CODE>artanh(z) = (log(1+z)-log(1-z)) / 2</CODE> and satisfies | |
| <CODE>artanh(-z) = -artanh(z)</CODE>. The range of the result is | |
| the strip in the complex domain | |
| <CODE>-pi/2 <= imagpart(artanh(z)) <= pi/2</CODE>, excluding the numbers | |
| with <CODE>imagpart = -pi/2</CODE> and <CODE>realpart <= 0</CODE> and the numbers | |
| with <CODE>imagpart = pi/2</CODE> and <CODE>realpart >= 0</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC32" HREF="cln_toc.html#TOC32">4.8.4 Euler gamma</A></H3> | |
| <P> | |
| <A NAME="IDX128"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Euler's constant C = 0.577... is returned by the following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX129"></A> | |
| Returns Euler's constant as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (const cl_F& y)</CODE> | |
| <DD> | |
| Returns Euler's constant in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_eulerconst (void)</CODE> | |
| <DD> | |
| Returns Euler's constant as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Catalan's constant G = 0.915... is returned by the following functions: | |
| <A NAME="IDX130"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX131"></A> | |
| Returns Catalan's constant as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (const cl_F& y)</CODE> | |
| <DD> | |
| Returns Catalan's constant in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_catalanconst (void)</CODE> | |
| <DD> | |
| Returns Catalan's constant as a float of format <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC33" HREF="cln_toc.html#TOC33">4.8.5 Riemann zeta</A></H3> | |
| <P> | |
| <A NAME="IDX132"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Riemann's zeta function at an integral point <CODE>s>1</CODE> is returned by the | |
| following functions: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s, cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX133"></A> | |
| Returns Riemann's zeta function at <CODE>s</CODE> as a float of format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s, const cl_F& y)</CODE> | |
| <DD> | |
| Returns Riemann's zeta function at <CODE>s</CODE> in the float format of <CODE>y</CODE>. | |
| 
 | |
| <DT><CODE>cl_F cl_zeta (int s)</CODE> | |
| <DD> | |
| Returns Riemann's zeta function at <CODE>s</CODE> as a float of format | |
| <CODE>cl_default_float_format</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC34" HREF="cln_toc.html#TOC34">4.9 Functions on integers</A></H2> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC35" HREF="cln_toc.html#TOC35">4.9.1 Logical functions</A></H3> | |
| 
 | |
| <P> | |
| Integers, when viewed as in two's complement notation, can be thought as | |
| infinite bit strings where the bits' values eventually are constant. | |
| For example, | |
| 
 | |
| <PRE> | |
|     17 = ......00010001 | |
|     -6 = ......11111010 | |
| </PRE> | |
| 
 | |
| <P> | |
| The logical operations view integers as such bit strings and operate | |
| on each of the bit positions in parallel. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I lognot (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX134"></A> | |
| <DT><CODE>cl_I operator ~ (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX135"></A> | |
| Logical not, like <CODE>~x</CODE> in C. This is the same as <CODE>-1-x</CODE>. | |
| 
 | |
| <DT><CODE>cl_I logand (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX136"></A> | |
| <DT><CODE>cl_I operator & (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX137"></A> | |
| Logical and, like <CODE>x & y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logior (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX138"></A> | |
| <DT><CODE>cl_I operator | (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX139"></A> | |
| Logical (inclusive) or, like <CODE>x | y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logxor (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX140"></A> | |
| <DT><CODE>cl_I operator ^ (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX141"></A> | |
| Exclusive or, like <CODE>x ^ y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logeqv (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX142"></A> | |
| Bitwise equivalence, like <CODE>~(x ^ y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I lognand (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX143"></A> | |
| Bitwise not and, like <CODE>~(x & y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I lognor (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX144"></A> | |
| Bitwise not or, like <CODE>~(x | y)</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logandc1 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX145"></A> | |
| Logical and, complementing the first argument, like <CODE>~x & y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logandc2 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX146"></A> | |
| Logical and, complementing the second argument, like <CODE>x & ~y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logorc1 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX147"></A> | |
| Logical or, complementing the first argument, like <CODE>~x | y</CODE> in C. | |
| 
 | |
| <DT><CODE>cl_I logorc2 (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX148"></A> | |
| Logical or, complementing the second argument, like <CODE>x | ~y</CODE> in C. | |
| </DL> | |
| 
 | |
| <P> | |
| These operations are all available though the function | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I boole (cl_boole op, const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX149"></A> | |
| </DL> | |
| <P> | |
| where <CODE>op</CODE> must have one of the 16 values (each one stands for a function | |
| which combines two bits into one bit): <CODE>boole_clr</CODE>, <CODE>boole_set</CODE>, | |
| <CODE>boole_1</CODE>, <CODE>boole_2</CODE>, <CODE>boole_c1</CODE>, <CODE>boole_c2</CODE>, | |
| <CODE>boole_and</CODE>, <CODE>boole_ior</CODE>, <CODE>boole_xor</CODE>, <CODE>boole_eqv</CODE>, | |
| <CODE>boole_nand</CODE>, <CODE>boole_nor</CODE>, <CODE>boole_andc1</CODE>, <CODE>boole_andc2</CODE>, | |
| <CODE>boole_orc1</CODE>, <CODE>boole_orc2</CODE>. | |
| <A NAME="IDX150"></A> | |
| <A NAME="IDX151"></A> | |
| <A NAME="IDX152"></A> | |
| <A NAME="IDX153"></A> | |
| <A NAME="IDX154"></A> | |
| <A NAME="IDX155"></A> | |
| <A NAME="IDX156"></A> | |
| <A NAME="IDX157"></A> | |
| <A NAME="IDX158"></A> | |
| <A NAME="IDX159"></A> | |
| <A NAME="IDX160"></A> | |
| <A NAME="IDX161"></A> | |
| <A NAME="IDX162"></A> | |
| <A NAME="IDX163"></A> | |
| <A NAME="IDX164"></A> | |
| 
 | |
| 
 | |
| <P> | |
| Other functions that view integers as bit strings: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean logtest (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX165"></A> | |
| Returns true if some bit is set in both <CODE>x</CODE> and <CODE>y</CODE>, i.e. if | |
| <CODE>logand(x,y) != 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean logbitp (const cl_I& n, const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX166"></A> | |
| Returns true if the <CODE>n</CODE>th bit (from the right) of <CODE>x</CODE> is set. | |
| Bit 0 is the least significant bit. | |
| 
 | |
| <DT><CODE>uintL logcount (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX167"></A> | |
| Returns the number of one bits in <CODE>x</CODE>, if <CODE>x</CODE> >= 0, or | |
| the number of zero bits in <CODE>x</CODE>, if <CODE>x</CODE> < 0. | |
| </DL> | |
| 
 | |
| <P> | |
| The following functions operate on intervals of bits in integers.  | |
| The type | |
| 
 | |
| <PRE> | |
| struct cl_byte { uintL size; uintL position; }; | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX168"></A> | |
| represents the bit interval containing the bits | |
| <CODE>position</CODE>...<CODE>position+size-1</CODE> of an integer. | |
| The constructor <CODE>cl_byte(size,position)</CODE> constructs a <CODE>cl_byte</CODE>. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I ldb (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX169"></A> | |
| extracts the bits of <CODE>n</CODE> described by the bit interval <CODE>b</CODE> | |
| and returns them as a nonnegative integer with <CODE>b.size</CODE> bits. | |
| 
 | |
| <DT><CODE>cl_boolean ldb_test (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX170"></A> | |
| Returns true if some bit described by the bit interval <CODE>b</CODE> is set in | |
| <CODE>n</CODE>. | |
| 
 | |
| <DT><CODE>cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX171"></A> | |
| Returns <CODE>n</CODE>, with the bits described by the bit interval <CODE>b</CODE> | |
| replaced by <CODE>newbyte</CODE>. Only the lowest <CODE>b.size</CODE> bits of | |
| <CODE>newbyte</CODE> are relevant. | |
| </DL> | |
| 
 | |
| <P> | |
| The functions <CODE>ldb</CODE> and <CODE>dpb</CODE> implicitly shift. The following | |
| functions are their counterparts without shifting: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I mask_field (const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX172"></A> | |
| returns an integer with the bits described by the bit interval <CODE>b</CODE> | |
| copied from the corresponding bits in <CODE>n</CODE>, the other bits zero. | |
| 
 | |
| <DT><CODE>cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b)</CODE> | |
| <DD> | |
| <A NAME="IDX173"></A> | |
| returns an integer where the bits described by the bit interval <CODE>b</CODE> | |
| come from <CODE>newbyte</CODE> and the other bits come from <CODE>n</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| The following relations hold: | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>ldb (n, b) = mask_field(n, b) >> b.position</CODE>, | |
| <LI> | |
| 
 | |
| <CODE>dpb (newbyte, n, b) = deposit_field (newbyte << b.position, n, b)</CODE>, | |
| <LI> | |
| 
 | |
| <CODE>deposit_field(newbyte,n,b) = n ^ mask_field(n,b) ^ mask_field(new_byte,b)</CODE>. | |
| </UL> | |
| 
 | |
| <P> | |
| The following operations on integers as bit strings are efficient shortcuts | |
| for common arithmetic operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_boolean oddp (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX174"></A> | |
| Returns true if the least significant bit of <CODE>x</CODE> is 1. Equivalent to | |
| <CODE>mod(x,2) != 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_boolean evenp (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX175"></A> | |
| Returns true if the least significant bit of <CODE>x</CODE> is 0. Equivalent to | |
| <CODE>mod(x,2) == 0</CODE>. | |
| 
 | |
| <DT><CODE>cl_I operator << (const cl_I& x, const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX176"></A> | |
| Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the left. <CODE>n</CODE> should be >=0. | |
| Equivalent to <CODE>x * expt(2,n)</CODE>. | |
| 
 | |
| <DT><CODE>cl_I operator >> (const cl_I& x, const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX177"></A> | |
| Shifts <CODE>x</CODE> by <CODE>n</CODE> bits to the right. <CODE>n</CODE> should be >=0. | |
| Bits shifted out to the right are thrown away. | |
| Equivalent to <CODE>floor(x / expt(2,n))</CODE>. | |
| 
 | |
| <DT><CODE>cl_I ash (const cl_I& x, const cl_I& y)</CODE> | |
| <DD> | |
| <A NAME="IDX178"></A> | |
| Shifts <CODE>x</CODE> by <CODE>y</CODE> bits to the left (if <CODE>y</CODE>>=0) or | |
| by <CODE>-y</CODE> bits to the right (if <CODE>y</CODE><=0). In other words, this | |
| returns <CODE>floor(x * expt(2,y))</CODE>. | |
| 
 | |
| <DT><CODE>uintL integer_length (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX179"></A> | |
| Returns the number of bits (excluding the sign bit) needed to represent <CODE>x</CODE> | |
| in two's complement notation. This is the smallest n >= 0 such that | |
| -2^n <= x < 2^n. If x > 0, this is the unique n > 0 such that | |
| 2^(n-1) <= x < 2^n. | |
| 
 | |
| <DT><CODE>uintL ord2 (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX180"></A> | |
| <CODE>x</CODE> must be non-zero. This function returns the number of 0 bits at the | |
| right of <CODE>x</CODE> in two's complement notation. This is the largest n >= 0 | |
| such that 2^n divides <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>uintL power2p (const cl_I& x)</CODE> | |
| <DD> | |
| <A NAME="IDX181"></A> | |
| <CODE>x</CODE> must be > 0. This function checks whether <CODE>x</CODE> is a power of 2. | |
| If <CODE>x</CODE> = 2^(n-1), it returns n. Else it returns 0. | |
| (See also the function <CODE>logp</CODE>.) | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC36" HREF="cln_toc.html#TOC36">4.9.2 Number theoretic functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>uint32 gcd (uint32 a, uint32 b)</CODE> | |
| <DD> | |
| <A NAME="IDX182"></A> | |
| <DT><CODE>cl_I gcd (const cl_I& a, const cl_I& b)</CODE> | |
| <DD> | |
| This function returns the greatest common divisor of <CODE>a</CODE> and <CODE>b</CODE>, | |
| normalized to be >= 0. | |
| 
 | |
| <DT><CODE>cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v)</CODE> | |
| <DD> | |
| <A NAME="IDX183"></A> | |
| This function ("extended gcd") returns the greatest common divisor <CODE>g</CODE> of | |
| <CODE>a</CODE> and <CODE>b</CODE> and at the same time the representation of <CODE>g</CODE> | |
| as an integral linear combination of <CODE>a</CODE> and <CODE>b</CODE>: | |
| <CODE>u</CODE> and <CODE>v</CODE> with <CODE>u*a+v*b = g</CODE>, <CODE>g</CODE> >= 0. | |
| <CODE>u</CODE> and <CODE>v</CODE> will be normalized to be of smallest possible absolute | |
| value, in the following sense: If <CODE>a</CODE> and <CODE>b</CODE> are non-zero, and | |
| <CODE>abs(a) != abs(b)</CODE>, <CODE>u</CODE> and <CODE>v</CODE> will satisfy the inequalities | |
| <CODE>abs(u) <= abs(b)/(2*g)</CODE>, <CODE>abs(v) <= abs(a)/(2*g)</CODE>. | |
| 
 | |
| <DT><CODE>cl_I lcm (const cl_I& a, const cl_I& b)</CODE> | |
| <DD> | |
| <A NAME="IDX184"></A> | |
| This function returns the least common multiple of <CODE>a</CODE> and <CODE>b</CODE>, | |
| normalized to be >= 0. | |
| 
 | |
| <DT><CODE>cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l)</CODE> | |
| <DD> | |
| <A NAME="IDX185"></A> | |
| <DT><CODE>cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l)</CODE> | |
| <DD> | |
| <CODE>a</CODE> must be > 0. <CODE>b</CODE> must be >0 and != 1. If log(a,b) is | |
| rational number, this function returns true and sets *l = log(a,b), else | |
| it returns false. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC37" HREF="cln_toc.html#TOC37">4.9.3 Combinatorial functions</A></H3> | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_I factorial (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX186"></A> | |
| <CODE>n</CODE> must be a small integer >= 0. This function returns the factorial | |
| <CODE>n</CODE>! = <CODE>1*2*...*n</CODE>. | |
| 
 | |
| <DT><CODE>cl_I doublefactorial (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX187"></A> | |
| <CODE>n</CODE> must be a small integer >= 0. This function returns the  | |
| doublefactorial <CODE>n</CODE>!! = <CODE>1*3*...*n</CODE> or  | |
| <CODE>n</CODE>!! = <CODE>2*4*...*n</CODE>, respectively. | |
| 
 | |
| <DT><CODE>cl_I binomial (uintL n, uintL k)</CODE> | |
| <DD> | |
| <A NAME="IDX188"></A> | |
| <CODE>n</CODE> and <CODE>k</CODE> must be small integers >= 0. This function returns the | |
| binomial coefficient | |
| (<CODE>n</CODE> choose <CODE>k</CODE>) = <CODE>n</CODE>! / <CODE>k</CODE>! <CODE>(n-k)</CODE>! | |
| for 0 <= k <= n, 0 else. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC38" HREF="cln_toc.html#TOC38">4.10 Functions on floating-point numbers</A></H2> | |
| 
 | |
| <P> | |
| Recall that a floating-point number consists of a sign <CODE>s</CODE>, an | |
| exponent <CODE>e</CODE> and a mantissa <CODE>m</CODE>. The value of the number is | |
| <CODE>(-1)^s * 2^e * m</CODE>. | |
| 
 | |
| 
 | |
| <P> | |
| Each of the classes | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE> | |
| defines the following operations. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, sintL delta)</CODE> | |
| <DD> | |
| <A NAME="IDX189"></A> | |
| <DT><CODE><VAR>type</VAR> scale_float (const <VAR>type</VAR>& x, const cl_I& delta)</CODE> | |
| <DD> | |
| Returns <CODE>x*2^delta</CODE>. This is more efficient than an explicit multiplication | |
| because it copies <CODE>x</CODE> and modifies the exponent. | |
| </DL> | |
| 
 | |
| <P> | |
| The following functions provide an abstract interface to the underlying | |
| representation of floating-point numbers. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>sintL float_exponent (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX190"></A> | |
| Returns the exponent <CODE>e</CODE> of <CODE>x</CODE>. | |
| For <CODE>x = 0.0</CODE>, this is 0. For <CODE>x</CODE> non-zero, this is the unique | |
| integer with <CODE>2^(e-1) <= abs(x) < 2^e</CODE>. | |
| 
 | |
| <DT><CODE>sintL float_radix (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX191"></A> | |
| Returns the base of the floating-point representation. This is always <CODE>2</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR> float_sign (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX192"></A> | |
| Returns the sign <CODE>s</CODE> of <CODE>x</CODE> as a float. The value is 1 for | |
| <CODE>x</CODE> >= 0, -1 for <CODE>x</CODE> < 0. | |
| 
 | |
| <DT><CODE>uintL float_digits (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX193"></A> | |
| Returns the number of mantissa bits in the floating-point representation | |
| of <CODE>x</CODE>, including the hidden bit. The value only depends on the type | |
| of <CODE>x</CODE>, not on its value. | |
| 
 | |
| <DT><CODE>uintL float_precision (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX194"></A> | |
| Returns the number of significant mantissa bits in the floating-point | |
| representation of <CODE>x</CODE>. Since denormalized numbers are not supported, | |
| this is the same as <CODE>float_digits(x)</CODE> if <CODE>x</CODE> is non-zero, and | |
| 0 if <CODE>x</CODE> = 0. | |
| </DL> | |
| 
 | |
| <P> | |
| The complete internal representation of a float is encoded in the type | |
| <A NAME="IDX195"></A> | |
| <A NAME="IDX196"></A> | |
| <A NAME="IDX197"></A> | |
| <A NAME="IDX198"></A> | |
| <A NAME="IDX199"></A> | |
| <CODE>cl_decoded_float</CODE> (or <CODE>cl_decoded_sfloat</CODE>, <CODE>cl_decoded_ffloat</CODE>, | |
| <CODE>cl_decoded_dfloat</CODE>, <CODE>cl_decoded_lfloat</CODE>, respectively), defined by | |
| 
 | |
| <PRE> | |
| struct cl_decoded_<VAR>type</VAR>float { | |
|         <VAR>type</VAR> mantissa; cl_I exponent; <VAR>type</VAR> sign; | |
| }; | |
| </PRE> | |
| 
 | |
| <P> | |
| and returned by the function | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_decoded_<VAR>type</VAR>float decode_float (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX200"></A> | |
| For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with | |
| <CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>0.5 <= m < 1.0</CODE>. For <CODE>x</CODE> = 0, | |
| it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0. | |
| <CODE>e</CODE> is the same as returned by the function <CODE>float_exponent</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| A complete decoding in terms of integers is provided as type | |
| 
 | |
| <PRE> | |
| <A NAME="IDX201"></A>struct cl_idecoded_float { | |
|         cl_I mantissa; cl_I exponent; cl_I sign; | |
| }; | |
| </PRE> | |
| 
 | |
| <P> | |
| by the following function: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_idecoded_float integer_decode_float (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX202"></A> | |
| For <CODE>x</CODE> non-zero, this returns <CODE>(-1)^s</CODE>, <CODE>e</CODE>, <CODE>m</CODE> with | |
| <CODE>x = (-1)^s * 2^e * m</CODE> and <CODE>m</CODE> an integer with <CODE>float_digits(x)</CODE> | |
| bits. For <CODE>x</CODE> = 0, it returns <CODE>(-1)^s</CODE>=1, <CODE>e</CODE>=0, <CODE>m</CODE>=0. | |
| WARNING: The exponent <CODE>e</CODE> is not the same as the one returned by | |
| the functions <CODE>decode_float</CODE> and <CODE>float_exponent</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Some other function, implemented only for class <CODE>cl_F</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F float_sign (const cl_F& x, const cl_F& y)</CODE> | |
| <DD> | |
| <A NAME="IDX203"></A> | |
| This returns a floating point number whose precision and absolute value | |
| is that of <CODE>y</CODE> and whose sign is that of <CODE>x</CODE>. If <CODE>x</CODE> is | |
| zero, it is treated as positive. Same for <CODE>y</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC39" HREF="cln_toc.html#TOC39">4.11 Conversion functions</A></H2> | |
| <P> | |
| <A NAME="IDX204"></A> | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC40" HREF="cln_toc.html#TOC40">4.11.1 Conversion to floating-point numbers</A></H3> | |
| 
 | |
| <P> | |
| The type <CODE>cl_float_format_t</CODE> describes a floating-point format. | |
| <A NAME="IDX205"></A> | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_float_format (uintL n)</CODE> | |
| <DD> | |
| <A NAME="IDX206"></A> | |
| Returns the smallest float format which guarantees at least <CODE>n</CODE> | |
| decimal digits in the mantissa (after the decimal point). | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_float_format (const cl_F& x)</CODE> | |
| <DD> | |
| Returns the floating point format of <CODE>x</CODE>. | |
| 
 | |
| <DT><CODE>cl_float_format_t cl_default_float_format</CODE> | |
| <DD> | |
| <A NAME="IDX207"></A> | |
| Global variable: the default float format used when converting rational numbers | |
| to floats. | |
| </DL> | |
| 
 | |
| <P> | |
| To convert a real number to a float, each of the types | |
| <CODE>cl_R</CODE>, <CODE>cl_F</CODE>, <CODE>cl_I</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>int</CODE>, <CODE>unsigned int</CODE>, <CODE>float</CODE>, <CODE>double</CODE> | |
| defines the following operations: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX208"></A> | |
| Returns <CODE>x</CODE> as a float of format <CODE>f</CODE>. | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x, const cl_F& y)</CODE> | |
| <DD> | |
| Returns <CODE>x</CODE> in the float format of <CODE>y</CODE>. | |
| <DT><CODE>cl_F cl_float (const <VAR>type</VAR>&x)</CODE> | |
| <DD> | |
| Returns <CODE>x</CODE> as a float of format <CODE>cl_default_float_format</CODE> if | |
| it is an exact number, or <CODE>x</CODE> itself if it is already a float. | |
| </DL> | |
| 
 | |
| <P> | |
| Of course, converting a number to a float can lose precision. | |
| 
 | |
| 
 | |
| <P> | |
| Every floating-point format has some characteristic numbers: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_F most_positive_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX209"></A> | |
| Returns the largest (most positive) floating point number in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F most_negative_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX210"></A> | |
| Returns the smallest (most negative) floating point number in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F least_positive_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX211"></A> | |
| Returns the least positive floating point number (i.e. > 0 but closest to 0) | |
| in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F least_negative_float (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX212"></A> | |
| Returns the least negative floating point number (i.e. < 0 but closest to 0) | |
| in float format <CODE>f</CODE>. | |
| 
 | |
| <DT><CODE>cl_F float_epsilon (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX213"></A> | |
| Returns the smallest floating point number e > 0 such that <CODE>1+e != 1</CODE>. | |
| 
 | |
| <DT><CODE>cl_F float_negative_epsilon (cl_float_format_t f)</CODE> | |
| <DD> | |
| <A NAME="IDX214"></A> | |
| Returns the smallest floating point number e > 0 such that <CODE>1-e != 1</CODE>. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H3><A NAME="SEC41" HREF="cln_toc.html#TOC41">4.11.2 Conversion to rational numbers</A></H3> | |
| 
 | |
| <P> | |
| Each of the classes <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_F</CODE> | |
| defines the following operation: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_RA rational (const <VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX215"></A> | |
| Returns the value of <CODE>x</CODE> as an exact number. If <CODE>x</CODE> is already | |
| an exact number, this is <CODE>x</CODE>. If <CODE>x</CODE> is a floating-point number, | |
| the value is a rational number whose denominator is a power of 2. | |
| </DL> | |
| 
 | |
| <P> | |
| In order to convert back, say, <CODE>(cl_F)(cl_R)"1/3"</CODE> to <CODE>1/3</CODE>, there is | |
| the function | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>cl_RA rationalize (const cl_R& x)</CODE> | |
| <DD> | |
| <A NAME="IDX216"></A> | |
| If <CODE>x</CODE> is a floating-point number, it actually represents an interval | |
| of real numbers, and this function returns the rational number with | |
| smallest denominator (and smallest numerator, in magnitude) | |
| which lies in this interval. | |
| If <CODE>x</CODE> is already an exact number, this function returns <CODE>x</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| If <CODE>x</CODE> is any float, one has | |
| 
 | |
| 
 | |
| 
 | |
| <UL> | |
| <LI> | |
| 
 | |
| <CODE>cl_float(rational(x),x) = x</CODE> | |
| <LI> | |
| 
 | |
| <CODE>cl_float(rationalize(x),x) = x</CODE> | |
| </UL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC42" HREF="cln_toc.html#TOC42">4.12 Random number generators</A></H2> | |
| 
 | |
| <P> | |
| A random generator is a machine which produces (pseudo-)random numbers. | |
| The include file <CODE><cl_random.h></CODE> defines a class <CODE>cl_random_state</CODE> | |
| which contains the state of a random generator. If you make a copy | |
| of the random number generator, the original one and the copy will produce | |
| the same sequence of random numbers. | |
| 
 | |
| 
 | |
| <P> | |
| The following functions return (pseudo-)random numbers in different formats. | |
| Calling one of these modifies the state of the random number generator in | |
| a complicated but deterministic way. | |
| 
 | |
| 
 | |
| <P> | |
| The global variable | |
| <A NAME="IDX217"></A> | |
| <A NAME="IDX218"></A> | |
| 
 | |
| <PRE> | |
| cl_random_state cl_default_random_state | |
| </PRE> | |
| 
 | |
| <P> | |
| contains a default random number generator. It is used when the functions | |
| below are called without <CODE>cl_random_state</CODE> argument. | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE>uint32 random32 (cl_random_state& randomstate)</CODE> | |
| <DD> | |
| <DT><CODE>uint32 random32 ()</CODE> | |
| <DD> | |
| <A NAME="IDX219"></A> | |
| Returns a random unsigned 32-bit number. All bits are equally random. | |
| 
 | |
| <DT><CODE>cl_I random_I (cl_random_state& randomstate, const cl_I& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_I random_I (const cl_I& n)</CODE> | |
| <DD> | |
| <A NAME="IDX220"></A> | |
| <CODE>n</CODE> must be an integer > 0. This function returns a random integer <CODE>x</CODE> | |
| in the range <CODE>0 <= x < n</CODE>. | |
| 
 | |
| <DT><CODE>cl_F random_F (cl_random_state& randomstate, const cl_F& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_F random_F (const cl_F& n)</CODE> | |
| <DD> | |
| <A NAME="IDX221"></A> | |
| <CODE>n</CODE> must be a float > 0. This function returns a random floating-point | |
| number of the same format as <CODE>n</CODE> in the range <CODE>0 <= x < n</CODE>. | |
| 
 | |
| <DT><CODE>cl_R random_R (cl_random_state& randomstate, const cl_R& n)</CODE> | |
| <DD> | |
| <DT><CODE>cl_R random_R (const cl_R& n)</CODE> | |
| <DD> | |
| <A NAME="IDX222"></A> | |
| Behaves like <CODE>random_I</CODE> if <CODE>n</CODE> is an integer and like <CODE>random_F</CODE> | |
| if <CODE>n</CODE> is a float. | |
| </DL> | |
| 
 | |
| 
 | |
| 
 | |
| <H2><A NAME="SEC43" HREF="cln_toc.html#TOC43">4.13 Obfuscating operators</A></H2> | |
| <P> | |
| <A NAME="IDX223"></A> | |
| 
 | |
| 
 | |
| <P> | |
| The modifying C/C++ operators <CODE>+=</CODE>, <CODE>-=</CODE>, <CODE>*=</CODE>, <CODE>/=</CODE>, | |
| <CODE>&=</CODE>, <CODE>|=</CODE>, <CODE>^=</CODE>, <CODE><<=</CODE>, <CODE>>>=</CODE> | |
| are not available by default because their | |
| use tends to make programs unreadable. It is trivial to get away without | |
| them. However, if you feel that you absolutely need these operators | |
| to get happy, then add | |
| 
 | |
| <PRE> | |
| #define WANT_OBFUSCATING_OPERATORS | |
| </PRE> | |
| 
 | |
| <P> | |
| <A NAME="IDX224"></A> | |
| to the beginning of your source files, before the inclusion of any CLN | |
| include files. This flag will enable the following operators: | |
| 
 | |
| 
 | |
| <P> | |
| For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX225"></A> | |
| <DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX226"></A> | |
| <DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX227"></A> | |
| <DT><CODE><VAR>type</VAR>& operator /= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX228"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| For the class <CODE>cl_I</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator += (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator -= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator *= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <DT><CODE><VAR>type</VAR>& operator &= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX229"></A> | |
| <DT><CODE><VAR>type</VAR>& operator |= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX230"></A> | |
| <DT><CODE><VAR>type</VAR>& operator ^= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX231"></A> | |
| <DT><CODE><VAR>type</VAR>& operator <<= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX232"></A> | |
| <DT><CODE><VAR>type</VAR>& operator >>= (<VAR>type</VAR>&, const <VAR>type</VAR>&)</CODE> | |
| <DD> | |
| <A NAME="IDX233"></A> | |
| </DL> | |
| 
 | |
| <P> | |
| For the classes <CODE>cl_N</CODE>, <CODE>cl_R</CODE>, <CODE>cl_RA</CODE>, <CODE>cl_I</CODE>, | |
| <CODE>cl_F</CODE>, <CODE>cl_SF</CODE>, <CODE>cl_FF</CODE>, <CODE>cl_DF</CODE>, <CODE>cl_LF</CODE>: | |
| 
 | |
| 
 | |
| <DL COMPACT> | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator ++ (<VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX234"></A> | |
| The prefix operator <CODE>++x</CODE>. | |
| 
 | |
| <DT><CODE>void operator ++ (<VAR>type</VAR>& x, int)</CODE> | |
| <DD> | |
| The postfix operator <CODE>x++</CODE>. | |
| 
 | |
| <DT><CODE><VAR>type</VAR>& operator -- (<VAR>type</VAR>& x)</CODE> | |
| <DD> | |
| <A NAME="IDX235"></A> | |
| The prefix operator <CODE>--x</CODE>. | |
| 
 | |
| <DT><CODE>void operator -- (<VAR>type</VAR>& x, int)</CODE> | |
| <DD> | |
| The postfix operator <CODE>x--</CODE>. | |
| </DL> | |
| 
 | |
| <P> | |
| Note that by using these obfuscating operators, you wouldn't gain efficiency: | |
| In CLN <SAMP>`x += y;'</SAMP> is exactly the same as  <SAMP>`x = x+y;'</SAMP>, not more | |
| efficient. | |
| 
 | |
| 
 | |
| <P><HR><P> | |
| Go to the <A HREF="cln_1.html">first</A>, <A HREF="cln_3.html">previous</A>, <A HREF="cln_5.html">next</A>, <A HREF="cln_13.html">last</A> section, <A HREF="cln_toc.html">table of contents</A>. | |
| </BODY> | |
| </HTML>
 |