You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

199 lines
3.4 KiB

#This file was created by <bruno> Sun Feb 16 00:38:14 1997
#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
\lyxformat 2.10
\textclass article
\language default
\inputencoding latin1
\fontscheme default
\epsfig dvips
\papersize a4paper
\paperfontsize 12
\baselinestretch 1.00
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\quotes_language english
\quotes_times 2
\paperorientation portrait
\papercolumns 0
\papersides 1
\paperpagestyle plain
\layout Standard
The Hermite polynomials
\begin_inset Formula \( H_{n}(x) \)
\end_inset
are defined through
\begin_inset Formula
\[
H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
\end_inset
\layout Description
Theorem:
\layout Standard
\begin_inset Formula \( H_{n}(x) \)
\end_inset
satisfies the recurrence relation
\layout Standard
\begin_inset Formula
\[
H_{0}(x)=1\]
\end_inset
\layout Standard
\begin_inset Formula
\[
H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
\end_inset
for
\begin_inset Formula \( n\geq 0 \)
\end_inset
and the differential equation
\begin_inset Formula \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
\end_inset
for all
\begin_inset Formula \( n\geq 0 \)
\end_inset
.
\layout Description
Proof:
\layout Standard
Let
\begin_inset Formula \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \)
\end_inset
be the exponential generating function of the sequence of polynomials.
Then, because the Taylor series development theorem holds in formal power
series rings (see [1], section 2.
16), we can simplify
\begin_inset Formula
\begin{eqnarray*}
F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
& = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
& = & e^{2xz-z^{2}}
\end{eqnarray*}
\end_inset
It follows that
\begin_inset Formula \( \frac{d}{dz}F=(2x-2z)\cdot F \)
\end_inset
.
This is equivalent to the claimed recurrence.
\layout Standard
\cursor 190
Starting from this equation, we compute a linear relation for the partial
derivatives of
\begin_inset Formula \( F \)
\end_inset
.
Write
\begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
\end_inset
and
\begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
\end_inset
.
One computes
\begin_inset Formula
\[
F=1\cdot F\]
\end_inset
\begin_inset Formula
\[
\partial _{x}F=2z\cdot F\]
\end_inset
\begin_inset Formula
\[
\partial _{x}^{2}F=4z^{2}\cdot F\]
\end_inset
\begin_inset Formula
\[
\Delta _{z}F=(2xz-2z^{2})\cdot F\]
\end_inset
\begin_inset Formula
\[
\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
\end_inset
\begin_inset Formula
\[
\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
\end_inset
Solve a homogeneous
\begin_inset Formula \( 5\times 6 \)
\end_inset
system of linear equations over
\begin_inset Formula \( Q(x) \)
\end_inset
to get
\begin_inset Formula
\[
(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
\end_inset
This is equivalent to the claimed equation
\begin_inset Formula \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \)
\end_inset
.
\layout Bibliography
[1] Bruno Haible: D-finite power series in several variables.
\shape italic
Diploma thesis, University of Karlsruhe, June 1989
\shape default
.
Sections 2.
15 and 2.
22.