You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
5.4 KiB
208 lines
5.4 KiB
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:43 1997
|
|
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
|
|
|
|
%% Don't edit this file unless you are sure what you are doing.
|
|
\documentclass[12pt,a4paper,oneside,onecolumn]{article}
|
|
\usepackage[]{fontenc}
|
|
\usepackage[latin1]{inputenc}
|
|
\usepackage[dvips]{epsfig}
|
|
|
|
%%
|
|
%% BEGIN The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\makeatletter
|
|
\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
|
|
\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
|
|
\global\@topnum\z@
|
|
\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
|
|
}
|
|
\newcommand{\lyxline}[1]{
|
|
{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
|
|
}
|
|
\newenvironment{lyxsectionbibliography}
|
|
{
|
|
\section*{\refname}
|
|
\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\newenvironment{lyxchapterbibliography}
|
|
{
|
|
\chapter*{\bibname}
|
|
\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\def\lxq{"}
|
|
\newenvironment{lyxcode}
|
|
{\list{}{
|
|
\rightmargin\leftmargin
|
|
\raggedright
|
|
\itemsep 0pt
|
|
\parsep 0pt
|
|
\ttfamily
|
|
}%
|
|
\item[]
|
|
}
|
|
{\endlist}
|
|
\newcommand{\lyxlabel}[1]{#1 \hfill}
|
|
\newenvironment{lyxlist}[1]
|
|
{\begin{list}{}
|
|
{\settowidth{\labelwidth}{#1}
|
|
\setlength{\leftmargin}{\labelwidth}
|
|
\addtolength{\leftmargin}{\labelsep}
|
|
\renewcommand{\makelabel}{\lyxlabel}}}
|
|
{\end{list}}
|
|
\newcommand{\lyxletterstyle}{
|
|
\setlength\parskip{0.7em}
|
|
\setlength\parindent{0pt}
|
|
}
|
|
\newcommand{\lyxaddress}[1]{
|
|
\par {\raggedright #1
|
|
\vspace{1.4em}
|
|
\noindent\par}
|
|
}
|
|
\newcommand{\lyxrightaddress}[1]{
|
|
\par {\raggedleft \begin{tabular}{l}\ignorespaces
|
|
#1
|
|
\end{tabular}
|
|
\vspace{1.4em}
|
|
\par}
|
|
}
|
|
\newcommand{\lyxformula}[1]{
|
|
\begin{eqnarray*}
|
|
#1
|
|
\end{eqnarray*}
|
|
}
|
|
\newcommand{\lyxnumberedformula}[1]{
|
|
\begin{eqnarray}
|
|
#1
|
|
\end{eqnarray}
|
|
}
|
|
\makeatother
|
|
|
|
%%
|
|
%% END The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\pagestyle{plain}
|
|
\setcounter{secnumdepth}{3}
|
|
\setcounter{tocdepth}{3}
|
|
\begin{document}
|
|
|
|
The Tschebychev polynomials (of the 1st kind) \( T_{n}(x) \) are defined through
|
|
the recurrence relation
|
|
|
|
|
|
\[
|
|
T_{0}(x)=1\]
|
|
|
|
|
|
|
|
\[
|
|
T_{1}(x)=x\]
|
|
|
|
|
|
|
|
\[
|
|
T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\]
|
|
for \( n\geq 0 \).
|
|
|
|
\begin{description}
|
|
|
|
\item [Theorem:]~
|
|
|
|
\end{description}
|
|
|
|
\( T_{n}(x) \) satisfies the differential equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) for all \( n\geq 0 \).
|
|
|
|
\begin{description}
|
|
|
|
\item [Proof:]~
|
|
|
|
\end{description}
|
|
|
|
Let \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \) be the generating function of the sequence of polynomials. The
|
|
recurrence is equivalent to the equation
|
|
\[
|
|
(1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\]
|
|
|
|
|
|
\begin{description}
|
|
|
|
\item [Proof~1:]~
|
|
|
|
\end{description}
|
|
|
|
\( F \) is a rational function in \( z \), \( F=\frac{1-xz}{1-2xz+z^{2}} \). From the theory of recursions with
|
|
constant coefficients, we know that we have to perform a partial fraction
|
|
decomposition. So let \( p(z)=z^{2}-2x\cdot z+1 \) be the denominator and \( \alpha =x+\sqrt{x^{2}-1} \) and \( \alpha ^{-1} \) its zeroes.
|
|
The partial fraction decomposition reads
|
|
\[
|
|
F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \]
|
|
hence \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \). Note that the
|
|
field \( Q(x)(\alpha ) \), being a finite dimensional extension field of \( Q(x) \) in characteristic
|
|
0, has a unique derivation extending \( \frac{d}{dx} \) on \( Q(x) \). We can therefore try
|
|
to construct an annihilating differential operator for \( T_{n}(x) \) by combination
|
|
of annihilating differential operators for \( \alpha ^{n} \) and \( \alpha ^{-n} \). In fact, \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \) satisfies
|
|
\( L_{1}[\alpha ^{n}]=0 \), and \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \) satisfies \( L_{2}[\alpha ^{-n}]=0 \). A common multiple of \( L_{1} \) and \( L_{2} \) is easily found
|
|
by solving an appropriate system of linear equations:
|
|
|
|
\( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \)
|
|
|
|
It follows that both \( L[\alpha ^{n}]=0 \) and \( L[\alpha ^{-n}]=0 \), hence \( L[T_{n}(x)]=0 \).
|
|
|
|
\begin{description}
|
|
|
|
\item [Proof~2:]~
|
|
|
|
\end{description}
|
|
|
|
Starting from the above equation, we compute a linear relation for
|
|
the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
|
|
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) \cdot F=1-xz\]
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\]
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\]
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\]
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\]
|
|
|
|
\[
|
|
\left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\]
|
|
|
|
|
|
Solve a \( 6\times 6 \) system of linear equations over \( Q(x) \) to get
|
|
\[
|
|
x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\]
|
|
|
|
|
|
This is equivalent to the claimed equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \).
|
|
|
|
\begin{lyxsectionbibliography}
|
|
|
|
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
|
|
thesis, University of Karlsruhe, June 1989. \em Sections 2.12 and
|
|
2.15.
|
|
|
|
\end{lyxsectionbibliography}
|
|
|
|
\end{document}
|