You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

316 lines
6.0 KiB

#This file was created by <bruno> Sun Feb 16 14:05:04 1997
#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
\lyxformat 2.10
\textclass article
\begin_preamble
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
\def\ll{\langle\!\langle}
\def\gg{\rangle\!\rangle}
\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
\end_preamble
\language default
\inputencoding latin1
\fontscheme default
\epsfig dvips
\papersize a4paper
\paperfontsize 12
\baselinestretch 1.00
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\quotes_language english
\quotes_times 2
\paperorientation portrait
\papercolumns 0
\papersides 1
\paperpagestyle plain
\layout Standard
The Laguerre polynomials
\begin_inset Formula \( L_{n}(x) \)
\end_inset
are defined through
\begin_inset Formula
\[
L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
\end_inset
\layout Description
Theorem:
\layout Standard
\begin_inset Formula \( L_{n}(x) \)
\end_inset
satisfies the recurrence relation
\layout Standard
\begin_inset Formula
\[
L_{0}(x)=1\]
\end_inset
\layout Standard
\begin_inset Formula
\[
L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
\end_inset
for
\begin_inset Formula \( n\geq 0 \)
\end_inset
and the differential equation
\begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
\end_inset
for all
\begin_inset Formula \( n\geq 0 \)
\end_inset
.
\layout Description
Proof:
\layout Standard
Let
\begin_inset Formula \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \)
\end_inset
be the exponential generating function of the sequence of polynomials.
It is the diagonal series of the power series
\begin_inset Formula
\[
G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
\end_inset
Because the Taylor series development theorem holds in formal power series
rings (see [1], section 2.
16), we can simplify
\begin_inset Formula
\begin{eqnarray*}
G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
& = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
& = & \frac{e^{-y}}{1-(x+y)z}
\end{eqnarray*}
\end_inset
We take over the terminology from the
\begin_inset Quotes eld
\end_inset
diag_rational
\begin_inset Quotes erd
\end_inset
paper; here
\begin_inset Formula \( R=Q[x] \)
\end_inset
and
\begin_inset Formula \( M=Q[[x]] \)
\end_inset
(or, if you like it better,
\begin_inset Formula \( M=H(C) \)
\end_inset
, the algebra of functions holomorphic in the entire complex plane).
\begin_inset Formula \( G\in M[[y,z]] \)
\end_inset
is not rational; nevertheless we can proceed similarly to the
\begin_inset Quotes eld
\end_inset
diag_series
\begin_inset Quotes erd
\end_inset
paper.
\begin_inset Formula \( F(z^{2}) \)
\end_inset
is the coefficient of
\begin_inset Formula \( t^{0} \)
\end_inset
in
\begin_inset Formula
\[
G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
\end_inset
The denominator's only zero is
\begin_inset Formula \( t=\frac{xz}{1-z^{2}} \)
\end_inset
.
We can write
\begin_inset Formula
\[
e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
\end_inset
with
\begin_inset Formula \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \)
\end_inset
.
This yields -- all computations being done in
\begin_inset Formula \( M\ll z,t\gg \)
\end_inset
--
\begin_inset Formula
\begin{eqnarray*}
G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
& = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
\end{eqnarray*}
\end_inset
Here, the coefficient of
\begin_inset Formula \( t^{0} \)
\end_inset
is
\begin_inset Formula
\[
F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
\end_inset
hence
\begin_inset Formula
\[
F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
\end_inset
\layout Standard
It follows that
\begin_inset Formula \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \)
\end_inset
.
This is equivalent to the claimed recurrence.
\layout Standard
Starting from the closed form for
\begin_inset Formula \( F \)
\end_inset
, we compute a linear relation for the partial derivatives of
\begin_inset Formula \( F \)
\end_inset
.
Write
\begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
\end_inset
and
\begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
\end_inset
.
One computes
\begin_inset Formula
\[
F=1\cdot F\]
\end_inset
\begin_inset Formula
\[
\left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
\end_inset
\begin_inset Formula
\[
\left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
\end_inset
\begin_inset Formula
\[
\left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
\end_inset
\begin_inset Formula
\[
\left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
\end_inset
Solve a homogeneous
\begin_inset Formula \( 4\times 5 \)
\end_inset
system of linear equations over
\begin_inset Formula \( Q(x) \)
\end_inset
to get
\begin_inset Formula
\[
\left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
\end_inset
Divide by the first factor to get
\begin_inset Formula
\[
(1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
\end_inset
This is equivalent to the claimed equation
\begin_inset Formula \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \)
\end_inset
.
\layout Bibliography
\cursor 123
[1] Bruno Haible: D-finite power series in several variables.
\shape italic
Diploma thesis, University of Karlsruhe, June 1989
\shape default
.
Sections 2.
15 and 2.
22.