230 lines
7.0 KiB
230 lines
7.0 KiB
// Univariate Polynomials over the rational numbers.
|
|
|
|
#ifndef _CL_UNIVPOLY_RATIONAL_H
|
|
#define _CL_UNIVPOLY_RATIONAL_H
|
|
|
|
#include "cln/ring.h"
|
|
#include "cln/univpoly.h"
|
|
#include "cln/number.h"
|
|
#include "cln/rational_class.h"
|
|
#include "cln/integer_class.h"
|
|
#include "cln/rational_ring.h"
|
|
|
|
namespace cln {
|
|
|
|
// Normal univariate polynomials with stricter static typing:
|
|
// `cl_RA' instead of `cl_ring_element'.
|
|
|
|
#ifdef notyet
|
|
|
|
typedef cl_UP_specialized<cl_RA> cl_UP_RA;
|
|
typedef cl_univpoly_specialized_ring<cl_RA> cl_univpoly_rational_ring;
|
|
//typedef cl_heap_univpoly_specialized_ring<cl_RA> cl_heap_univpoly_rational_ring;
|
|
|
|
#else
|
|
|
|
class cl_heap_univpoly_rational_ring;
|
|
|
|
class cl_univpoly_rational_ring : public cl_univpoly_ring {
|
|
public:
|
|
// Default constructor.
|
|
cl_univpoly_rational_ring () : cl_univpoly_ring () {}
|
|
// Copy constructor.
|
|
cl_univpoly_rational_ring (const cl_univpoly_rational_ring&);
|
|
// Assignment operator.
|
|
cl_univpoly_rational_ring& operator= (const cl_univpoly_rational_ring&);
|
|
// Automatic dereferencing.
|
|
cl_heap_univpoly_rational_ring* operator-> () const
|
|
{ return (cl_heap_univpoly_rational_ring*)heappointer; }
|
|
};
|
|
// Copy constructor and assignment operator.
|
|
CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_rational_ring,cl_univpoly_ring)
|
|
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_rational_ring,cl_univpoly_rational_ring)
|
|
|
|
class cl_UP_RA : public cl_UP {
|
|
public:
|
|
const cl_univpoly_rational_ring& ring () const { return The(cl_univpoly_rational_ring)(_ring); }
|
|
// Conversion.
|
|
CL_DEFINE_CONVERTER(cl_ring_element)
|
|
// Destructive modification.
|
|
void set_coeff (uintL index, const cl_RA& y);
|
|
void finalize();
|
|
// Evaluation.
|
|
const cl_RA operator() (const cl_RA& y) const;
|
|
public: // Ability to place an object at a given address.
|
|
void* operator new (size_t size) { return malloc_hook(size); }
|
|
void* operator new (size_t size, cl_UP_RA* ptr) { (void)size; return ptr; }
|
|
void operator delete (void* ptr) { free_hook(ptr); }
|
|
};
|
|
|
|
class cl_heap_univpoly_rational_ring : public cl_heap_univpoly_ring {
|
|
SUBCLASS_cl_heap_univpoly_ring()
|
|
// High-level operations.
|
|
void fprint (cl_ostream stream, const cl_UP_RA& x)
|
|
{
|
|
cl_heap_univpoly_ring::fprint(stream,x);
|
|
}
|
|
cl_boolean equal (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{
|
|
return cl_heap_univpoly_ring::equal(x,y);
|
|
}
|
|
const cl_UP_RA zero ()
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::zero());
|
|
}
|
|
cl_boolean zerop (const cl_UP_RA& x)
|
|
{
|
|
return cl_heap_univpoly_ring::zerop(x);
|
|
}
|
|
const cl_UP_RA plus (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::plus(x,y));
|
|
}
|
|
const cl_UP_RA minus (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::minus(x,y));
|
|
}
|
|
const cl_UP_RA uminus (const cl_UP_RA& x)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::uminus(x));
|
|
}
|
|
const cl_UP_RA one ()
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::one());
|
|
}
|
|
const cl_UP_RA canonhom (const cl_I& x)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::canonhom(x));
|
|
}
|
|
const cl_UP_RA mul (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::mul(x,y));
|
|
}
|
|
const cl_UP_RA square (const cl_UP_RA& x)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::square(x));
|
|
}
|
|
const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::expt_pos(x,y));
|
|
}
|
|
const cl_UP_RA scalmul (const cl_RA& x, const cl_UP_RA& y)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_RA_ring,x),y));
|
|
}
|
|
sintL degree (const cl_UP_RA& x)
|
|
{
|
|
return cl_heap_univpoly_ring::degree(x);
|
|
}
|
|
const cl_UP_RA monomial (const cl_RA& x, uintL e)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_RA_ring,x),e));
|
|
}
|
|
const cl_RA coeff (const cl_UP_RA& x, uintL index)
|
|
{
|
|
return The(cl_RA)(cl_heap_univpoly_ring::coeff(x,index));
|
|
}
|
|
const cl_UP_RA create (sintL deg)
|
|
{
|
|
return The2(cl_UP_RA)(cl_heap_univpoly_ring::create(deg));
|
|
}
|
|
void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
|
|
{
|
|
cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_RA_ring,y));
|
|
}
|
|
void finalize (cl_UP_RA& x)
|
|
{
|
|
cl_heap_univpoly_ring::finalize(x);
|
|
}
|
|
const cl_RA eval (const cl_UP_RA& x, const cl_RA& y)
|
|
{
|
|
return The(cl_RA)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_RA_ring,y)));
|
|
}
|
|
private:
|
|
// No need for any constructors.
|
|
cl_heap_univpoly_rational_ring ();
|
|
};
|
|
|
|
// Lookup of polynomial rings.
|
|
inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r)
|
|
{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r)); }
|
|
inline const cl_univpoly_rational_ring find_univpoly_ring (const cl_rational_ring& r, const cl_symbol& varname)
|
|
{ return The(cl_univpoly_rational_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }
|
|
|
|
// Operations on polynomials.
|
|
|
|
// Add.
|
|
inline const cl_UP_RA operator+ (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{ return x.ring()->plus(x,y); }
|
|
|
|
// Negate.
|
|
inline const cl_UP_RA operator- (const cl_UP_RA& x)
|
|
{ return x.ring()->uminus(x); }
|
|
|
|
// Subtract.
|
|
inline const cl_UP_RA operator- (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{ return x.ring()->minus(x,y); }
|
|
|
|
// Multiply.
|
|
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_UP_RA& y)
|
|
{ return x.ring()->mul(x,y); }
|
|
|
|
// Squaring.
|
|
inline const cl_UP_RA square (const cl_UP_RA& x)
|
|
{ return x.ring()->square(x); }
|
|
|
|
// Exponentiation x^y, where y > 0.
|
|
inline const cl_UP_RA expt_pos (const cl_UP_RA& x, const cl_I& y)
|
|
{ return x.ring()->expt_pos(x,y); }
|
|
|
|
// Scalar multiplication.
|
|
#if 0 // less efficient
|
|
inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
|
|
{ return y.ring()->mul(y.ring()->canonhom(x),y); }
|
|
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
|
|
{ return x.ring()->mul(x.ring()->canonhom(y),x); }
|
|
#endif
|
|
inline const cl_UP_RA operator* (const cl_I& x, const cl_UP_RA& y)
|
|
{ return y.ring()->scalmul(x,y); }
|
|
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_I& y)
|
|
{ return x.ring()->scalmul(y,x); }
|
|
inline const cl_UP_RA operator* (const cl_RA& x, const cl_UP_RA& y)
|
|
{ return y.ring()->scalmul(x,y); }
|
|
inline const cl_UP_RA operator* (const cl_UP_RA& x, const cl_RA& y)
|
|
{ return x.ring()->scalmul(y,x); }
|
|
|
|
// Coefficient.
|
|
inline const cl_RA coeff (const cl_UP_RA& x, uintL index)
|
|
{ return x.ring()->coeff(x,index); }
|
|
|
|
// Destructive modification.
|
|
inline void set_coeff (cl_UP_RA& x, uintL index, const cl_RA& y)
|
|
{ x.ring()->set_coeff(x,index,y); }
|
|
inline void finalize (cl_UP_RA& x)
|
|
{ x.ring()->finalize(x); }
|
|
inline void cl_UP_RA::set_coeff (uintL index, const cl_RA& y)
|
|
{ ring()->set_coeff(*this,index,y); }
|
|
inline void cl_UP_RA::finalize ()
|
|
{ ring()->finalize(*this); }
|
|
|
|
// Evaluation. (No extension of the base ring allowed here for now.)
|
|
inline const cl_RA cl_UP_RA::operator() (const cl_RA& y) const
|
|
{
|
|
return ring()->eval(*this,y);
|
|
}
|
|
|
|
// Derivative.
|
|
inline const cl_UP_RA deriv (const cl_UP_RA& x)
|
|
{ return The2(cl_UP_RA)(deriv((const cl_UP&)x)); }
|
|
|
|
#endif
|
|
|
|
CL_REQUIRE(cl_RA_ring)
|
|
|
|
|
|
// Returns the n-th Legendre polynomial (n >= 0).
|
|
extern const cl_UP_RA legendre (sintL n);
|
|
|
|
} // namespace cln
|
|
|
|
#endif /* _CL_UNIVPOLY_RATIONAL_H */
|