You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

162 lines
3.5 KiB

// Ring of complex numbers.
// General includes.
#include "cl_sysdep.h"
CL_PROVIDE(cl_C_ring)
// Specification.
#include "cln/complex_ring.h"
// Implementation.
#include "cln/complex.h"
#include "cln/complex_io.h"
#include "cl_C.h"
namespace cln {
static void N_fprint (cl_heap_ring* R, std::ostream& stream, const _cl_ring_element& x)
{
unused R;
fprint(stream,The(cl_N)(x));
}
static bool N_equal (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
unused R;
return equal(The(cl_N)(x),The(cl_N)(y));
}
static const _cl_ring_element N_zero (cl_heap_ring* R)
{
return _cl_ring_element(R, (cl_N)0);
}
static bool N_zerop (cl_heap_ring* R, const _cl_ring_element& x)
{
unused R;
// Here we return true only if x is the *exact* zero. Because we
// don't want the degree of polynomials to depend on rounding errors.
// For all ring theoretic purposes, we treat 0.0, 0+0.0i etc. as if
// they were zero divisors.
return exact_zerop(The(cl_N)(x));
}
static const _cl_ring_element N_plus (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_N)(x) + The(cl_N)(y));
}
static const _cl_ring_element N_minus (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_N)(x) - The(cl_N)(y));
}
static const _cl_ring_element N_uminus (cl_heap_ring* R, const _cl_ring_element& x)
{
return _cl_ring_element(R, - The(cl_N)(x));
}
static const _cl_ring_element N_one (cl_heap_ring* R)
{
return _cl_ring_element(R, (cl_N)1);
}
static const _cl_ring_element N_canonhom (cl_heap_ring* R, const cl_I& x)
{
return _cl_ring_element(R, (cl_N)x);
}
static const _cl_ring_element N_mul (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y)
{
return _cl_ring_element(R, The(cl_N)(x) * The(cl_N)(y));
}
static const _cl_ring_element N_square (cl_heap_ring* R, const _cl_ring_element& x)
{
return _cl_ring_element(R, square(The(cl_N)(x)));
}
static const _cl_ring_element N_expt_pos (cl_heap_ring* R, const _cl_ring_element& x, const cl_I& y)
{
return _cl_ring_element(R, expt(The(cl_N)(x),y));
}
static bool cl_N_p (const cl_number& x)
{
return (!x.pointer_p()
|| (x.pointer_type()->flags & cl_class_flags_subclass_complex) != 0);
}
static cl_ring_setops N_setops = {
N_fprint,
N_equal
};
static cl_ring_addops N_addops = {
N_zero,
N_zerop,
N_plus,
N_minus,
N_uminus
};
static cl_ring_mulops N_mulops = {
N_one,
N_canonhom,
N_mul,
N_square,
N_expt_pos
};
static cl_number_ring_ops<cl_N> N_ops = {
cl_N_p,
equal,
exact_zerop,
operator+,
operator-,
operator-,
operator*,
square,
expt
};
class cl_heap_complex_ring : public cl_heap_number_ring {
SUBCLASS_cl_heap_ring()
public:
// Constructor.
cl_heap_complex_ring ()
: cl_heap_number_ring (&N_setops,&N_addops,&N_mulops,
(cl_number_ring_ops<cl_number>*) &N_ops)
{ type = &cl_class_complex_ring; }
// Destructor.
~cl_heap_complex_ring () {}
};
static void cl_complex_ring_destructor (cl_heap* pointer)
{
(*(cl_heap_complex_ring*)pointer).~cl_heap_complex_ring();
}
static void cl_complex_ring_dprint (cl_heap* pointer)
{
unused pointer;
fprint(cl_debugout, "(cl_complex_ring) cl_C_ring");
}
cl_class cl_class_complex_ring = {
cl_complex_ring_destructor,
cl_class_flags_number_ring,
cl_complex_ring_dprint
};
// Constructor.
template <>
inline cl_complex_ring::cl_specialized_number_ring ()
: cl_number_ring (new cl_heap_complex_ring()) {}
const cl_complex_ring cl_C_ring;
} // namespace cln
CL_PROVIDE_END(cl_C_ring)