You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

326 lines
9.7 KiB

// sqrt_mod_p().
// General includes.
#include "base/cl_sysdep.h"
// Specification.
#include "cln/numtheory.h"
// Implementation.
#include "integer/cl_I.h"
#include "cln/exception.h"
#undef floor
#include <cmath>
#define floor cln_floor
// MacOS X does "#define _R 0x00040000L". Grr...
#undef _R
namespace cln {
// Algorithm 1 (for very small p only):
// Try different values.
// Assume p is prime and a nonzero square in Z/pZ.
static uint32 search_sqrt (uint32 p, uint32 a)
{
var uint32 x = 1;
var uint32 x2 = 1;
loop {
// 0 < x <= p/2, x2 = x^2 mod p.
if (x2 == a)
return x;
x2 += x; x++; x2 += x;
if (x2 >= p)
x2 -= p;
}
}
// Algorithm 2 (for p > 2 only):
// Cantor-Zassenhaus.
// [Beth et al.: Computer Algebra, 1988, Kapitel 5.3.3.]
// [Cohen, A Course in Computational Algebraic Number Theory,
// Section 3.4.4., Algorithm 3.4.6.]
// Input: R = Z/pZ with p>2, and a (nonzero square in R).
static const sqrt_mod_p_t cantor_zassenhaus_sqrt (const cl_modint_ring& R, const cl_MI& a);
// Compute in the polynomial ring R[X]/(X^2-a).
struct pol2 {
// A polynomial c0+c1*X mod (X^2-a)
cl_MI c0;
cl_MI c1;
// Constructor.
pol2 (const cl_MI& _c0, const cl_MI& _c1) : c0 (_c0), c1 (_c1) {}
};
struct pol2ring {
const cl_modint_ring& R;
const cl_MI& a;
const pol2 zero ()
{
return pol2(R->zero(),R->zero());
}
const pol2 one ()
{
return pol2(R->one(),R->zero());
}
const pol2 plus (const pol2& u, const pol2& v)
{
return pol2(u.c0+v.c0, u.c1+v.c1);
}
const pol2 minus (const pol2& u, const pol2& v)
{
return pol2(u.c0-v.c0, u.c1-v.c1);
}
const pol2 mul (const pol2& u, const pol2& v)
{
return pol2(u.c0*v.c0+u.c1*v.c1*a, u.c0*v.c1+u.c1*v.c0);
}
const pol2 square (const pol2& u)
{
return pol2(cln::square(u.c0) + cln::square(u.c1)*a, (u.c0*u.c1)<<1);
}
const pol2 expt_pos (const pol2& x, const cl_I& y)
{
// Right-Left Binary, [Cohen, Algorithm 1.2.1.]
var pol2 a = x;
var cl_I b = y;
while (!oddp(b)) { a = square(a); b = b = b >> 1; } // a^b = x^y
var pol2 c = a;
until (eq(b,1)) {
b = b >> 1;
a = square(a);
// a^b*c = x^y
if (oddp(b))
c = mul(a,c);
}
return c;
}
const pol2 random ()
{
return pol2(R->random(),R->random());
}
// Computes the degree of gcd(u(X),X^2-a) and, if it is 1,
// also the zero if this polynomial of degree 1.
struct gcd_result {
cl_composite_condition* condition;
int gcd_degree;
cl_MI solution;
// Constructors.
gcd_result (cl_composite_condition* c) : condition (c) {}
gcd_result (int deg) : condition (NULL), gcd_degree (deg) {}
gcd_result (int deg, const cl_MI& sol) : condition (NULL), gcd_degree (deg), solution (sol) {}
};
const gcd_result gcd (const pol2& u)
{
if (zerop(u.c1))
// constant polynomial u(X)
if (zerop(u.c0))
return gcd_result(2);
else
return gcd_result(0);
// u(X) = c0 + c1*X has zero -c0/c1.
var cl_MI_x c1inv = R->recip(u.c1);
if (c1inv.condition)
return c1inv.condition;
var cl_MI z = -u.c0*c1inv;
if (cln::square(z) == a)
return gcd_result(1,z);
else
return gcd_result(0);
}
// Constructor.
pol2ring (const cl_modint_ring& _R, const cl_MI& _a) : R (_R), a (_a) {}
};
static const sqrt_mod_p_t cantor_zassenhaus_sqrt (const cl_modint_ring& R, const cl_MI& a)
{
var pol2ring PR = pol2ring(R,a);
var cl_I& p = R->modulus;
// Assuming p is a prime, then R[X]/(X^2-a) is the direct product of
// two rings R[X]/(X-sqrt(a)), each being isomorphic to R. Thus taking
// a (p-1)/2-th power in this ring will return one of (0,+1,-1) in
// each ring, with independent probabilities (1/p, (p-1)/2p, (p-1)/2p).
// For any polynomial u(X), setting v(X) := u(X)^((p-1)/2) yields
// gcd(u(X),X^2-a) * gcd(v(X)-1,X^2-a) * gcd(v(X)+1,X^2-a) = X^2-a.
// If p is not prime, all of these gcd's are likely to be 1.
var cl_I e = (p-1) >> 1;
loop {
// Choose a random polynomial u(X) in the ring.
var pol2 u = PR.random();
// Compute v(X) = u(X)^((p-1)/2).
var pol2 v = PR.expt_pos(u,e);
// Compute the three gcds.
var pol2ring::gcd_result g1 = PR.gcd(PR.minus(v,PR.one()));
if (g1.condition)
return g1.condition;
if (g1.gcd_degree == 1)
return sqrt_mod_p_t(2,g1.solution,-g1.solution);
if (g1.gcd_degree == 2)
continue;
var pol2ring::gcd_result g2 = PR.gcd(PR.plus(v,PR.one()));
if (g2.condition)
return g2.condition;
if (g2.gcd_degree == 1)
return sqrt_mod_p_t(2,g2.solution,-g2.solution);
if (g2.gcd_degree == 2)
continue;
var pol2ring::gcd_result g3 = PR.gcd(u);
if (g3.condition)
return g3.condition;
if (g3.gcd_degree == 1)
return sqrt_mod_p_t(2,g3.solution,-g3.solution);
if (g1.gcd_degree + g2.gcd_degree + g3.gcd_degree < 2)
// If the sum of the degrees of the gcd is != 2,
// p cannot be prime.
return new cl_composite_condition(p);
}
}
#if defined(__GNUC__) && defined(__s390__) && (__GNUC__ == 2) // Workaround GCC-bug (see below)
struct cl_sylow2gen_property : public cl_property {
SUBCLASS_cl_property();
public:
cl_I h_rep;
// Constructor.
cl_sylow2gen_property (const cl_symbol& k, const cl_MI& h) : cl_property (k), h_rep (h.rep) {}
};
#endif
// Algorithm 3 (for p > 2 only):
// Tonelli-Shanks.
// [Cohen, A Course in Computational Algebraic Number Theory,
// Section 1.5.1., Algorithm 1.5.1.]
static const sqrt_mod_p_t tonelli_shanks_sqrt (const cl_modint_ring& R, const cl_MI& a)
{
// Idea:
// Write p-1 = 2^e*m, m odd. G = (Z/pZ)^* (cyclic of order p-1) has
// subgroups G_0 < G_1 < ... < G_e, G_j of order 2^j. (G_e is called
// the "2-Sylow subgroup" of G.) More precisely
// G_j = { x in (Z/pZ)^* : x^(2^j) = 1 },
// G/G_j = { x^(2^j) : x in (Z/pZ)^* }.
// We compute the square root of a first in G/G_e, then lift it to
// G/G_(e-1), etc., up to G/G_0.
// Start with b = a^((m+1)/2), then (a^-1*b^2)^(2^e) = 1, i.e.
// a = b^2 in G/G_e.
// Lifting from G/G_j to G/G_(j-1) is easy: Assume a = b^2 in G/G_j.
// If a = b^2 in G/G_(j-1), then nothing needs to be done. Else
// a^-1*b^2 is in G_j \ G_(j-1). If j=e, a^-1*b^2 is a non-square
// mod p, hence a is a non-square as well, contradiction. If j<e,
// take h in G_(j+1) \ G_j, so that h^2 in G_j \ G_(j-1), and
// a^-1*b^2*h^2 is in G_(j-1). So multiply b with h.
var cl_I& p = R->modulus;
var uintC e = ord2(p-1);
var cl_I m = (p-1) >> e;
// p-1 = 2^e*m, m odd.
// We will have the invariant c = a^-1*b^2 in G/G_j.
var uintC j = e;
// Initialize b = a^((m+1)/2), c = a^m, but avoid to divide by a.
var cl_MI c = R->expt_pos(a,(m-1)>>1);
var cl_MI b = R->mul(a,c);
c = R->mul(b,c);
// Find h in G_e \ G_(e-1): h = h'^m, where h' is any non-square.
var cl_MI h;
if (e==1)
h = - R->one();
else {
// Since this computation is a bit costly, we cache its result
// on the ring's property list.
static const cl_symbol key = (cl_symbol)(cl_string)"generator of 2-Sylow subgroup of (Z/pZ)^*";
#if !(defined(__GNUC__) && defined(__s390__) && (__GNUC__ == 2)) // Workaround GCC-bug (see above)
struct cl_sylow2gen_property : public cl_property {
SUBCLASS_cl_property();
public:
cl_I h_rep;
// Constructor.
cl_sylow2gen_property (const cl_symbol& k, const cl_MI& h) : cl_property (k), h_rep (h.rep) {}
};
#endif
var cl_sylow2gen_property* prop = (cl_sylow2gen_property*) R->get_property(key);
if (prop)
h = cl_MI(R,prop->h_rep);
else {
do { h = R->random(); }
until (jacobi(R->retract(h),p) == -1);
h = R->expt_pos(h,m);
R->add_property(new cl_sylow2gen_property(key,h));
}
}
do {
// Now c = a^-1*b^2 in G_j, h in G_j \ G_(j-1).
// Determine the smallest i such that c in G_i.
var uintC i = 0;
var cl_MI ci = c; // c_i = c^(2^i)
for ( ; i < j; i++, ci = R->square(ci))
if (ci == R->one())
break;
if (i==j)
// Some problem: if j=e, a non-square, if j<e, the
// previous iteration didn't do its job correctly.
// Indicates that p is not prime.
return new cl_composite_condition(p);
// OK, i < j.
for (var uintC count = j-i-1; count > 0; count--)
h = R->square(h);
// Now h in G_(i+1) \ G_i.
b = R->mul(b,h);
h = R->square(h);
c = R->mul(c,h);
// Now c = a^-1*b^2 in G_(i-1), h in G_i \ G_(i-1).
j = i;
} while (j > 0);
if (R->square(b) != a)
// Problem again.
return new cl_composite_condition(p);
return sqrt_mod_p_t(2,b,-b);
}
// Break-Even-Points (on a i486 with 33 MHz):
// Algorithm 1 fastest for p < 1500..2000
// Algorithm 3 generally fastest for p > 2000.
// But the running time of algorithm 3 is proportional to e^2.
// For large e, algorithm 2 becomes faster.
// l=50 bits: for e >= 40
// l=100 bits: for e >= 55
// l=200 bits: for e >= 80
// l=400 bits: for e >= 130
// in general something like e > l/(log(l)/(2*log(2))-1).
const sqrt_mod_p_t sqrt_mod_p (const cl_modint_ring& R, const cl_MI& a)
{
if (!(a.ring() == R)) throw runtime_exception();
var cl_I& p = R->modulus;
var cl_I aa = R->retract(a);
switch (jacobi(aa,p)) {
case -1: // no solution
return sqrt_mod_p_t(0);
case 0: // gcd(aa,p) > 1
if (zerop(a))
// one solution
return sqrt_mod_p_t(1,a);
else
// found factor of p
return new cl_composite_condition(p,gcd(aa,p));
case 1: // two solutions
break;
}
if (p < 2000) {
// Algorithm 1.
var cl_I x1 = search_sqrt(cl_I_to_UL(p),cl_I_to_UL(aa));
var cl_I x2 = p-x1;
if (x1==x2) // can only happen when p = 2
return sqrt_mod_p_t(1,R->canonhom(x1));
else
return sqrt_mod_p_t(2,R->canonhom(x1),R->canonhom(x2));
}
var uintC l = integer_length(p);
var uintC e = ord2(p-1);
//if (e > 30 && e > l/(::log((double)l)*0.72-1))
if (e > 30 && e > l/(::log((double)l)*0.92-2.41))
// Algorithm 2.
return cantor_zassenhaus_sqrt(R,a);
else
// Algorithm 3.
return tonelli_shanks_sqrt(R,a);
}
} // namespace cln