214 lines
6.0 KiB
214 lines
6.0 KiB
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:06:08 1997
|
|
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
|
|
|
|
%% Don't edit this file unless you are sure what you are doing.
|
|
\documentclass[12pt,a4paper,oneside,onecolumn]{article}
|
|
\usepackage[]{fontenc}
|
|
\usepackage[latin1]{inputenc}
|
|
\usepackage[dvips]{epsfig}
|
|
|
|
%%
|
|
%% BEGIN The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\makeatletter
|
|
\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
|
|
\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
|
|
\global\@topnum\z@
|
|
\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
|
|
}
|
|
\newcommand{\lyxline}[1]{
|
|
{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
|
|
}
|
|
\newenvironment{lyxsectionbibliography}
|
|
{
|
|
\section*{\refname}
|
|
\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\newenvironment{lyxchapterbibliography}
|
|
{
|
|
\chapter*{\bibname}
|
|
\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\def\lxq{"}
|
|
\newenvironment{lyxcode}
|
|
{\list{}{
|
|
\rightmargin\leftmargin
|
|
\raggedright
|
|
\itemsep 0pt
|
|
\parsep 0pt
|
|
\ttfamily
|
|
}%
|
|
\item[]
|
|
}
|
|
{\endlist}
|
|
\newcommand{\lyxlabel}[1]{#1 \hfill}
|
|
\newenvironment{lyxlist}[1]
|
|
{\begin{list}{}
|
|
{\settowidth{\labelwidth}{#1}
|
|
\setlength{\leftmargin}{\labelwidth}
|
|
\addtolength{\leftmargin}{\labelsep}
|
|
\renewcommand{\makelabel}{\lyxlabel}}}
|
|
{\end{list}}
|
|
\newcommand{\lyxletterstyle}{
|
|
\setlength\parskip{0.7em}
|
|
\setlength\parindent{0pt}
|
|
}
|
|
\newcommand{\lyxaddress}[1]{
|
|
\par {\raggedright #1
|
|
\vspace{1.4em}
|
|
\noindent\par}
|
|
}
|
|
\newcommand{\lyxrightaddress}[1]{
|
|
\par {\raggedleft \begin{tabular}{l}\ignorespaces
|
|
#1
|
|
\end{tabular}
|
|
\vspace{1.4em}
|
|
\par}
|
|
}
|
|
\newcommand{\lyxformula}[1]{
|
|
\begin{eqnarray*}
|
|
#1
|
|
\end{eqnarray*}
|
|
}
|
|
\newcommand{\lyxnumberedformula}[1]{
|
|
\begin{eqnarray}
|
|
#1
|
|
\end{eqnarray}
|
|
}
|
|
\makeatother
|
|
|
|
%%
|
|
%% END The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\pagestyle{plain}
|
|
\setcounter{secnumdepth}{3}
|
|
\setcounter{tocdepth}{3}
|
|
|
|
%% Begin LyX user specified preamble:
|
|
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
|
|
\def\ll{\langle\!\langle}
|
|
\def\gg{\rangle\!\rangle}
|
|
\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
|
|
|
|
|
|
%% End LyX user specified preamble.
|
|
\begin{document}
|
|
|
|
The Laguerre polynomials \( L_{n}(x) \) are defined through
|
|
\[
|
|
L_{n}(x)=e^{x}\cdot \left( \frac{d}{dx}\right) ^{n}(x^{n}e^{-x})\]
|
|
|
|
|
|
\begin{description}
|
|
|
|
\item [Theorem:]~
|
|
|
|
\end{description}
|
|
|
|
\( L_{n}(x) \) satisfies the recurrence relation
|
|
|
|
|
|
\[
|
|
L_{0}(x)=1\]
|
|
|
|
|
|
|
|
\[
|
|
L_{n+1}(x)=(2n+1-x)\cdot L_{n}(x)-n^{2}\cdot L_{n-1}(x)\]
|
|
for \( n\geq 0 \) and the differential equation \( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \) for all \( n\geq 0 \).
|
|
|
|
\begin{description}
|
|
|
|
\item [Proof:]~
|
|
|
|
\end{description}
|
|
|
|
Let \( F:=\sum ^{\infty }_{n=0}\frac{L_{n}(x)}{n!}\cdot z^{n} \) be the exponential generating function of the sequence of polynomials.
|
|
It is the diagonal series of the power series
|
|
\[
|
|
G:=\sum _{m,n=0}^{\infty }\frac{1}{m!}\cdot e^{x}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\cdot z^{n}\]
|
|
Because the Taylor series
|
|
development theorem holds in formal power series rings (see [1], section
|
|
2.16), we can simplify
|
|
\begin{eqnarray*}
|
|
G & = & e^{x}\cdot \sum _{n=0}^{\infty }\left( \sum _{m=0}^{\infty }\frac{1}{m!}\cdot \left( \frac{d}{dx}\right) ^{m}(x^{n}e^{-x})\cdot y^{m}\right) \cdot z^{n}\\
|
|
& = & e^{x}\cdot \sum _{n=0}^{\infty }(x+y)^{n}e^{-(x+y)}\cdot z^{n}\\
|
|
& = & \frac{e^{-y}}{1-(x+y)z}
|
|
\end{eqnarray*}
|
|
We take over the terminology from the ``diag\_rational''
|
|
paper; here \( R=Q[x] \) and \( M=Q[[x]] \) (or, if you like it better, \( M=H(C) \), the algebra of
|
|
functions holomorphic in the entire complex plane). \( G\in M[[y,z]] \) is not rational;
|
|
nevertheless we can proceed similarly to the ``diag\_series'' paper.
|
|
\( F(z^{2}) \) is the coefficient of \( t^{0} \) in
|
|
\[
|
|
G(zt,\frac{z}{t})=\frac{e^{-zt}}{1-z^{2}-\frac{xz}{t}}\in M[[zt,\frac{z}{t},z]]=M\ll z,t\gg \]
|
|
The denominator's only zero is \( t=\frac{xz}{1-z^{2}} \). We
|
|
can write
|
|
\[
|
|
e^{-zt}=e^{-\frac{xz^{2}}{1-z^{2}}}+\left( zt-\frac{xz^{2}}{1-z^{2}}\right) \cdot P(z,t)\]
|
|
with \( P(z,t)\in Q[[zt,\frac{xz^{2}}{1-z^{2}}]]\subset Q[[zt,x,z]]=M[[zt,z]]\subset M\ll z,t\gg \). This yields -- all computations being done in \( M\ll z,t\gg \)
|
|
--
|
|
\begin{eqnarray*}
|
|
G(zt,\frac{z}{t}) & = & \frac{e^{-\frac{xz^{2}}{1-z^{2}}}}{1-z^{2}-\frac{xz}{t}}+\frac{zt}{1-z^{2}}\cdot P(z,t)\\
|
|
& = & \frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\cdot \sum _{j=0}^{\infty }\left( \frac{x}{1-z^{2}}\frac{z}{t}\right) ^{j}+\frac{zt}{1-z^{2}}\cdot P(z,t)
|
|
\end{eqnarray*}
|
|
Here, the coefficient of \( t^{0} \) is
|
|
\[
|
|
F(z^{2})=\frac{1}{1-z^{2}}\cdot e^{-\frac{xz^{2}}{1-z^{2}}}\]
|
|
hence
|
|
\[
|
|
F(z)=\frac{1}{1-z}\cdot e^{-\frac{xz}{1-z}}\]
|
|
|
|
|
|
It follows that \( (1-z)^{2}\cdot \frac{d}{dz}F-(1-x-z)\cdot F=0 \). This is equivalent to the claimed recurrence.
|
|
|
|
Starting from the closed form for \( F \), we compute a linear relation
|
|
for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
|
|
\[
|
|
F=1\cdot F\]
|
|
|
|
\[
|
|
\left( 1-z\right) \cdot \partial _{x}F=-z\cdot F\]
|
|
|
|
\[
|
|
\left( 1-z\right) ^{2}\cdot \partial _{x}^{2}F=z^{2}\cdot F\]
|
|
|
|
\[
|
|
\left( 1-z\right) ^{2}\cdot \Delta _{z}F=((1-x)z-z^{2})\cdot F\]
|
|
|
|
\[
|
|
\left( 1-z\right) ^{3}\cdot \partial _{x}\Delta _{z}F=(-z+xz^{2}+z^{3})\cdot F\]
|
|
Solve
|
|
a homogeneous \( 4\times 5 \) system of linear equations over \( Q(x) \) to get
|
|
\[
|
|
\left( 1-z\right) ^{3}\cdot \left( (1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F\right) =0\]
|
|
Divide by
|
|
the first factor to get
|
|
\[
|
|
(1-x)\cdot \partial _{x}F+x\cdot \partial _{x}^{2}F+\Delta _{z}F=0\]
|
|
This is equivalent to the claimed equation
|
|
\( x\cdot L_{n}^{''}(x)+(1-x)\cdot L_{n}^{'}(x)+n\cdot L_{n}(x)=0 \).
|
|
|
|
\begin{lyxsectionbibliography}
|
|
|
|
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
|
|
thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
|
|
2.22.
|
|
|
|
\end{lyxsectionbibliography}
|
|
|
|
\end{document}
|