You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

333 lines
5.7 KiB

#This file was created by <bruno> Sun Feb 16 00:32:21 1997
#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
\lyxformat 2.10
\textclass article
\language default
\inputencoding latin1
\fontscheme default
\epsfig dvips
\papersize a4paper
\paperfontsize 12
\baselinestretch 1.00
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\quotes_language english
\quotes_times 2
\paperorientation portrait
\papercolumns 1
\papersides 1
\paperpagestyle plain
\layout Standard
The Tschebychev polynomials (of the 1st kind)
\begin_inset Formula \( T_{n}(x) \)
\end_inset
are defined through the recurrence relation
\layout Standard
\begin_inset Formula
\[
T_{0}(x)=1\]
\end_inset
\layout Standard
\begin_inset Formula
\[
T_{1}(x)=x\]
\end_inset
\layout Standard
\begin_inset Formula
\[
T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\]
\end_inset
for
\begin_inset Formula \( n\geq 0 \)
\end_inset
.
\layout Description
Theorem:
\layout Standard
\begin_inset Formula \( T_{n}(x) \)
\end_inset
satisfies the differential equation
\begin_inset Formula \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
\end_inset
for all
\begin_inset Formula \( n\geq 0 \)
\end_inset
.
\layout Description
Proof:
\layout Standard
Let
\begin_inset Formula \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \)
\end_inset
be the generating function of the sequence of polynomials.
The recurrence is equivalent to the equation
\begin_inset Formula
\[
(1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\]
\end_inset
\layout Description
Proof
\protected_separator
1:
\layout Standard
\begin_inset Formula \( F \)
\end_inset
is a rational function in
\begin_inset Formula \( z \)
\end_inset
,
\begin_inset Formula \( F=\frac{1-xz}{1-2xz+z^{2}} \)
\end_inset
.
From the theory of recursions with constant coefficients, we know that
we have to perform a partial fraction decomposition.
So let
\begin_inset Formula \( p(z)=z^{2}-2x\cdot z+1 \)
\end_inset
be the denominator and
\begin_inset Formula \( \alpha =x+\sqrt{x^{2}-1} \)
\end_inset
and
\begin_inset Formula \( \alpha ^{-1} \)
\end_inset
its zeroes.
The partial fraction decomposition reads
\begin_inset Formula
\[
F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \]
\end_inset
hence
\begin_inset Formula \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \)
\end_inset
.
Note that the field
\begin_inset Formula \( Q(x)(\alpha ) \)
\end_inset
, being a finite dimensional extension field of
\begin_inset Formula \( Q(x) \)
\end_inset
in characteristic 0, has a unique derivation extending
\begin_inset Formula \( \frac{d}{dx} \)
\end_inset
on
\begin_inset Formula \( Q(x) \)
\end_inset
.
We can therefore try to construct an annihilating differential operator
for
\begin_inset Formula \( T_{n}(x) \)
\end_inset
by combination of annihilating differential operators for
\begin_inset Formula \( \alpha ^{n} \)
\end_inset
and
\begin_inset Formula \( \alpha ^{-n} \)
\end_inset
.
In fact,
\begin_inset Formula \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \)
\end_inset
satisfies
\begin_inset Formula \( L_{1}[\alpha ^{n}]=0 \)
\end_inset
, and
\begin_inset Formula \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \)
\end_inset
satisfies
\begin_inset Formula \( L_{2}[\alpha ^{-n}]=0 \)
\end_inset
.
A common multiple of
\begin_inset Formula \( L_{1} \)
\end_inset
and
\begin_inset Formula \( L_{2} \)
\end_inset
is easily found by solving an appropriate system of linear equations:
\layout Standard
\begin_inset Formula \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \)
\end_inset
\layout Standard
It follows that both
\begin_inset Formula \( L[\alpha ^{n}]=0 \)
\end_inset
and
\begin_inset Formula \( L[\alpha ^{-n}]=0 \)
\end_inset
, hence
\begin_inset Formula \( L[T_{n}(x)]=0 \)
\end_inset
.
\layout Description
Proof
\protected_separator
2:
\layout Standard
Starting from the above equation, we compute a linear relation for the partial
derivatives of
\begin_inset Formula \( F \)
\end_inset
.
Write
\begin_inset Formula \( \partial _{x}=\frac{d}{dx} \)
\end_inset
and
\begin_inset Formula \( \Delta _{z}=z\frac{d}{dz} \)
\end_inset
.
One computes
\layout Standard
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) \cdot F=1-xz\]
\end_inset
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\]
\end_inset
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\]
\end_inset
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\]
\end_inset
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\]
\end_inset
\begin_inset Formula
\[
\left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\]
\end_inset
\layout Standard
Solve a
\begin_inset Formula \( 6\times 6 \)
\end_inset
system of linear equations over
\begin_inset Formula \( Q(x) \)
\end_inset
to get
\begin_inset Formula
\[
x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\]
\end_inset
\layout Standard
This is equivalent to the claimed equation
\begin_inset Formula \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \)
\end_inset
.
\layout Bibliography
\cursor 137
[1] Bruno Haible: D-finite power series in several variables.
\shape italic
Diploma thesis, University of Karlsruhe, June 1989.
\shape default
Sections 2.
12 and 2.
15.