You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
4.1 KiB
176 lines
4.1 KiB
%% This LaTeX-file was created by <bruno> Sun Feb 16 14:05:55 1997
|
|
%% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team
|
|
|
|
%% Don't edit this file unless you are sure what you are doing.
|
|
\documentclass[12pt,a4paper,oneside,onecolumn]{article}
|
|
\usepackage[]{fontenc}
|
|
\usepackage[latin1]{inputenc}
|
|
\usepackage[dvips]{epsfig}
|
|
|
|
%%
|
|
%% BEGIN The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\makeatletter
|
|
\def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}%
|
|
\newcommand{\lyxtitle}[1] {\thispagestyle{empty}
|
|
\global\@topnum\z@
|
|
\section*{\LARGE \centering \sffamily \bfseries \protect#1 }
|
|
}
|
|
\newcommand{\lyxline}[1]{
|
|
{#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}}
|
|
}
|
|
\newenvironment{lyxsectionbibliography}
|
|
{
|
|
\section*{\refname}
|
|
\@mkboth{\uppercase{\refname}}{\uppercase{\refname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\newenvironment{lyxchapterbibliography}
|
|
{
|
|
\chapter*{\bibname}
|
|
\@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}
|
|
\begin{list}{}{
|
|
\itemindent-\leftmargin
|
|
\labelsep 0pt
|
|
\renewcommand{\makelabel}{}
|
|
}
|
|
}
|
|
{\end{list}}
|
|
\def\lxq{"}
|
|
\newenvironment{lyxcode}
|
|
{\list{}{
|
|
\rightmargin\leftmargin
|
|
\raggedright
|
|
\itemsep 0pt
|
|
\parsep 0pt
|
|
\ttfamily
|
|
}%
|
|
\item[]
|
|
}
|
|
{\endlist}
|
|
\newcommand{\lyxlabel}[1]{#1 \hfill}
|
|
\newenvironment{lyxlist}[1]
|
|
{\begin{list}{}
|
|
{\settowidth{\labelwidth}{#1}
|
|
\setlength{\leftmargin}{\labelwidth}
|
|
\addtolength{\leftmargin}{\labelsep}
|
|
\renewcommand{\makelabel}{\lyxlabel}}}
|
|
{\end{list}}
|
|
\newcommand{\lyxletterstyle}{
|
|
\setlength\parskip{0.7em}
|
|
\setlength\parindent{0pt}
|
|
}
|
|
\newcommand{\lyxaddress}[1]{
|
|
\par {\raggedright #1
|
|
\vspace{1.4em}
|
|
\noindent\par}
|
|
}
|
|
\newcommand{\lyxrightaddress}[1]{
|
|
\par {\raggedleft \begin{tabular}{l}\ignorespaces
|
|
#1
|
|
\end{tabular}
|
|
\vspace{1.4em}
|
|
\par}
|
|
}
|
|
\newcommand{\lyxformula}[1]{
|
|
\begin{eqnarray*}
|
|
#1
|
|
\end{eqnarray*}
|
|
}
|
|
\newcommand{\lyxnumberedformula}[1]{
|
|
\begin{eqnarray}
|
|
#1
|
|
\end{eqnarray}
|
|
}
|
|
\makeatother
|
|
|
|
%%
|
|
%% END The lyx specific LaTeX commands.
|
|
%%
|
|
|
|
\pagestyle{plain}
|
|
\setcounter{secnumdepth}{3}
|
|
\setcounter{tocdepth}{3}
|
|
\begin{document}
|
|
|
|
The Hermite polynomials \( H_{n}(x) \) are defined through
|
|
\[
|
|
H_{n}(x)=(-1)^{n}e^{x^{2}}\cdot \left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \]
|
|
|
|
|
|
\begin{description}
|
|
|
|
\item [Theorem:]~
|
|
|
|
\end{description}
|
|
|
|
\( H_{n}(x) \) satisfies the recurrence relation
|
|
|
|
|
|
\[
|
|
H_{0}(x)=1\]
|
|
|
|
|
|
|
|
\[
|
|
H_{n+1}(x)=2x\cdot H_{n}(x)-2n\cdot H_{n-1}(x)\]
|
|
for \( n\geq 0 \) and the differential equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \) for all \( n\geq 0 \).
|
|
|
|
\begin{description}
|
|
|
|
\item [Proof:]~
|
|
|
|
\end{description}
|
|
|
|
Let \( F:=\sum ^{\infty }_{n=0}\frac{H_{n}(x)}{n!}z^{n} \) be the exponential generating function of the sequence of polynomials.
|
|
Then, because the Taylor series development theorem holds in formal
|
|
power series rings (see [1], section 2.16), we can simplify
|
|
\begin{eqnarray*}
|
|
F & = & e^{x^{2}}\cdot \sum ^{\infty }_{n=0}\frac{1}{n!}\left( \frac{d}{dx}\right) ^{n}\left( e^{-x^{2}}\right) \cdot (-z)^{n}\\
|
|
& = & e^{x^{2}}\cdot e^{-(x-z)^{2}}\\
|
|
& = & e^{2xz-z^{2}}
|
|
\end{eqnarray*}
|
|
It follows
|
|
that \( \frac{d}{dz}F=(2x-2z)\cdot F \). This is equivalent to the claimed recurrence.
|
|
|
|
Starting from this equation, we compute a linear relation for the
|
|
partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes
|
|
\[
|
|
F=1\cdot F\]
|
|
|
|
\[
|
|
\partial _{x}F=2z\cdot F\]
|
|
|
|
\[
|
|
\partial _{x}^{2}F=4z^{2}\cdot F\]
|
|
|
|
\[
|
|
\Delta _{z}F=(2xz-2z^{2})\cdot F\]
|
|
|
|
\[
|
|
\partial _{x}\Delta _{z}F=(2z+4xz^{2}-4z^{3})\cdot F\]
|
|
|
|
\[
|
|
\Delta _{z}^{2}F=\left( 2x\cdot z+(4x^{2}-4)\cdot z^{2}-8x\cdot z^{3}+4\cdot z^{4}\right) \cdot F\]
|
|
Solve
|
|
a homogeneous \( 5\times 6 \) system of linear equations over \( Q(x) \) to get
|
|
\[
|
|
(-2x)\cdot \partial _{x}F+\partial _{x}^{2}F+2\cdot \Delta _{z}F=0\]
|
|
This is
|
|
equivalent to the claimed equation \( H_{n}^{''}(x)-2x\cdot H_{n}^{'}(x)+2n\cdot H_{n}(x)=0 \).
|
|
|
|
\begin{lyxsectionbibliography}
|
|
|
|
\item [1] Bruno Haible: D-finite power series in several variables. \em Diploma
|
|
thesis, University of Karlsruhe, June 1989\em . Sections 2.15 and
|
|
2.22.
|
|
|
|
\end{lyxsectionbibliography}
|
|
|
|
\end{document}
|