763 lines
13 KiB

#This file was created by <bruno> Sun Feb 16 14:19:06 1997
#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
\lyxformat 2.10
\textclass article
\begin_preamble
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
\def\Res{\mathop{\operator@font Res}}
\def\ll{\langle\!\langle}
\def\gg{\rangle\!\rangle}
\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
\end_preamble
\language default
\inputencoding latin1
\fontscheme default
\epsfig dvips
\papersize a4paper
\paperfontsize 12
\baselinestretch 1.00
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\quotes_language english
\quotes_times 2
\paperorientation portrait
\papercolumns 0
\papersides 1
\paperpagestyle plain
\layout LaTeX Title
The diagonal of a rational function
\layout Description
Theorem:
\layout Standard
Let
\begin_inset Formula \( M \)
\end_inset
be a torsion-free
\begin_inset Formula \( R \)
\end_inset
-module, and
\begin_inset Formula \( d>0 \)
\end_inset
.
Let
\begin_inset Formula
\[
f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
\end_inset
be a rational function, i.
e.
there are
\begin_inset Formula \( P\in M[x_{1},\ldots ,x_{d}] \)
\end_inset
and
\begin_inset Formula \( Q\in R[x_{1},\ldots ,x_{d}] \)
\end_inset
with
\begin_inset Formula \( Q(0,\ldots ,0)=1 \)
\end_inset
and
\begin_inset Formula \( Q\cdot f=P \)
\end_inset
.
Then the full diagonal of
\begin_inset Formula \( f \)
\end_inset
\begin_inset Formula
\[
g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
\end_inset
is a D-finite element of
\begin_inset Formula \( M[[x_{1}]] \)
\end_inset
, w.
r.
t.
\begin_inset Formula \( R[x_{1}] \)
\end_inset
and
\begin_inset Formula \( \{\partial _{x_{1}}\} \)
\end_inset
.
\layout Description
Proof:
\layout Standard
From the hypotheses,
\begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
\end_inset
is a torsion-free differential module over
\begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
\end_inset
w.
r.
t.
the derivatives
\begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
\end_inset
, and
\begin_inset Formula \( f \)
\end_inset
is a D-finite element of
\begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
\end_inset
over
\begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
\end_inset
w.
r.
t.
\begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
\end_inset
.
Now apply the general diagonal theorem ([1], section 2.
18)
\begin_inset Formula \( d-1 \)
\end_inset
times.
\layout Description
Theorem:
\layout Standard
Let
\begin_inset Formula \( R \)
\end_inset
be an integral domain of characteristic 0 and
\begin_inset Formula \( M \)
\end_inset
simultaneously a torsion-free
\begin_inset Formula \( R \)
\end_inset
-module and a commutative
\begin_inset Formula \( R \)
\end_inset
-algebra without zero divisors.
Let
\begin_inset Formula
\[
f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
\end_inset
be a rational function.
Then the diagonal of
\begin_inset Formula \( f \)
\end_inset
\begin_inset Formula
\[
g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
\end_inset
is algebraic over
\begin_inset Formula \( R[x] \)
\end_inset
.
\layout Description
Motivation
\protected_separator
of
\protected_separator
proof:
\layout Standard
The usual proof ([2]) uses complex analysis and works only for
\begin_inset Formula \( R=M=C \)
\end_inset
.
The idea is to compute
\begin_inset Formula
\[
g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
\end_inset
This integral, whose integrand is a rational function in
\begin_inset Formula \( x \)
\end_inset
and
\begin_inset Formula \( z \)
\end_inset
, is calculated using the residue theorem.
Since
\begin_inset Formula \( f(x,y) \)
\end_inset
is continuous at
\begin_inset Formula \( (0,0) \)
\end_inset
, there is a
\begin_inset Formula \( \delta >0 \)
\end_inset
such that
\begin_inset Formula \( f(x,y)\neq \infty \)
\end_inset
for
\begin_inset Formula \( |x|<\delta \)
\end_inset
,
\begin_inset Formula \( |y|<\delta \)
\end_inset
.
It follows that for all
\begin_inset Formula \( \varepsilon >0 \)
\end_inset
and
\begin_inset Formula \( |x|<\delta \varepsilon \)
\end_inset
all the poles of
\begin_inset Formula \( f(xz,\frac{x}{z}) \)
\end_inset
are contained in
\begin_inset Formula \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \)
\end_inset
.
Thus the poles of
\begin_inset Formula \( f(xz,\frac{x}{z}) \)
\end_inset
, all algebraic functions of
\begin_inset Formula \( x \)
\end_inset
-- let's call them
\begin_inset Formula \( \zeta _{1}(x),\ldots \zeta _{s}(x) \)
\end_inset
--, can be divided up into those for which
\begin_inset Formula \( |\zeta _{i}(x)|=O(|x|) \)
\end_inset
as
\begin_inset Formula \( x\rightarrow 0 \)
\end_inset
and those for which
\begin_inset Formula \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \)
\end_inset
as
\begin_inset Formula \( x\rightarrow 0 \)
\end_inset
.
It follows from the residue theorem that for
\begin_inset Formula \( |x|<\delta \)
\end_inset
\begin_inset Formula
\[
g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
\end_inset
This is algebraic over
\begin_inset Formula \( C(x) \)
\end_inset
.
Hence
\begin_inset Formula \( g(x) \)
\end_inset
is algebraic over
\begin_inset Formula \( C(x^{1/2}) \)
\end_inset
, hence also algebraic over
\begin_inset Formula \( C(x) \)
\end_inset
.
\layout Description
Proof:
\layout Standard
Let
\begin_inset Formula
\[
h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
\end_inset
Then
\begin_inset Formula \( g(x^{2}) \)
\end_inset
is the coefficient of
\begin_inset Formula \( z^{0} \)
\end_inset
in
\begin_inset Formula \( h(x,z) \)
\end_inset
.
Let
\begin_inset Formula \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \)
\end_inset
(with
\begin_inset Formula \( d:=\max (\deg _{y}P,\deg _{y}Q) \)
\end_inset
) be
\begin_inset Quotes eld
\end_inset
the denominator
\begin_inset Quotes erd
\end_inset
of
\begin_inset Formula \( h(x,z) \)
\end_inset
.
We have
\begin_inset Formula \( N(x,z)\in R[x,z] \)
\end_inset
and
\begin_inset Formula \( N\neq 0 \)
\end_inset
(because
\begin_inset Formula \( N(0,z)=z^{d} \)
\end_inset
).
Let
\begin_inset Formula \( K \)
\end_inset
be the quotient field of
\begin_inset Formula \( R \)
\end_inset
.
Thus
\begin_inset Formula \( N(x,z)\in K[x][z]\setminus \{0\} \)
\end_inset
.
\layout Standard
It is well-known (see [3], p.
64, or [4], chap.
IV, §2, prop.
8, or [5], chap.
III, §1) that the splitting field of
\begin_inset Formula \( N(x,z) \)
\end_inset
over
\begin_inset Formula \( K(x) \)
\end_inset
can be embedded into a field
\begin_inset Formula \( L((x^{1/r})) \)
\end_inset
, where
\begin_inset Formula \( r \)
\end_inset
is a positive integer and
\begin_inset Formula \( L \)
\end_inset
is a finite-algebraic extension field of
\begin_inset Formula \( K \)
\end_inset
, i.
e.
a simple algebraic extension
\begin_inset Formula \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \)
\end_inset
.
\layout Standard
\begin_inset Formula \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \)
\end_inset
is a
\begin_inset Formula \( K \)
\end_inset
-vector space and a commutative
\begin_inset Formula \( K \)
\end_inset
-algebra without zero divisors.
\begin_inset Formula \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \)
\end_inset
is an
\begin_inset Formula \( L \)
\end_inset
-vector space and a commutative
\begin_inset Formula \( L \)
\end_inset
-algebra without zero divisors.
\layout Standard
\begin_inset Formula
\begin{eqnarray*}
\widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\
& = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}
\end{eqnarray*}
\end_inset
is an
\begin_inset Formula \( L \)
\end_inset
-algebra which contains
\begin_inset Formula \( \widehat{M}((x^{1/r})) \)
\end_inset
.
\layout Standard
Since
\begin_inset Formula \( N(x,z) \)
\end_inset
splits into linear factors in
\begin_inset Formula \( L((x^{1/r}))[z] \)
\end_inset
,
\begin_inset Formula \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \)
\end_inset
, there exists a partial fraction decomposition of
\begin_inset Formula \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \)
\end_inset
in
\begin_inset Formula \( \widehat{M}\ll x,z\gg \)
\end_inset
:
\layout Standard
\begin_inset Formula
\[
h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
\end_inset
with
\begin_inset Formula \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \)
\end_inset
.
\layout Standard
Recall that we are looking for the coefficient of
\begin_inset Formula \( z^{0} \)
\end_inset
in
\begin_inset Formula \( h(x,z) \)
\end_inset
.
We compute it separately for each summand.
\layout Standard
If
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
\end_inset
with
\begin_inset Formula \( a\in L\setminus \{0\} \)
\end_inset
,
\begin_inset Formula \( m>0 \)
\end_inset
, or
\begin_inset Formula \( \zeta _{i}(x)=0 \)
\end_inset
, we have
\layout Standard
\begin_inset Formula
\begin{eqnarray*}
\frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\
& = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\
& = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}}
\end{eqnarray*}
\end_inset
hence the coefficient of
\begin_inset Formula \( z^{0} \)
\end_inset
in
\begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
\end_inset
is
\begin_inset Formula \( 0 \)
\end_inset
.
\layout Standard
\cursor 59
If
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
\end_inset
with
\begin_inset Formula \( a\in L\setminus \{0\} \)
\end_inset
,
\begin_inset Formula \( m<0 \)
\end_inset
, we have
\begin_inset Formula
\[
\frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
\end_inset
hence the coefficient of
\begin_inset Formula \( z^{0} \)
\end_inset
in
\begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
\end_inset
is
\begin_inset Formula \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \)
\end_inset
.
\layout Standard
The case
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
\end_inset
with
\begin_inset Formula \( a\in L\setminus \{0\} \)
\end_inset
,
\begin_inset Formula \( m=0 \)
\end_inset
, cannot occur, because it would imply
\begin_inset Formula \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
\end_inset
\layout Standard
Altogether we have
\begin_inset Formula
\[
g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
\end_inset
\layout Standard
Since all
\begin_inset Formula \( \zeta _{i}(x) \)
\end_inset
(in
\begin_inset Formula \( L((x^{1/r})) \)
\end_inset
) and all
\begin_inset Formula \( P_{j}(x),P_{i,k}(x) \)
\end_inset
(in
\begin_inset Formula \( \widehat{M}((x^{1/r})) \)
\end_inset
) are algebraic over
\begin_inset Formula \( K(x) \)
\end_inset
, the same holds also for
\begin_inset Formula \( g(x^{2}) \)
\end_inset
.
Hence
\begin_inset Formula \( g(x) \)
\end_inset
is algebraic over
\begin_inset Formula \( K(x^{1/2}) \)
\end_inset
, hence also over
\begin_inset Formula \( K(x) \)
\end_inset
.
After clearing denominators, we finally conclude that
\begin_inset Formula \( g(x) \)
\end_inset
is algebraic over
\begin_inset Formula \( R[x] \)
\end_inset
.
\layout Bibliography
[1] Bruno Haible: D-finite power series in several variables.
\shape italic
Diploma thesis, University of Karlsruhe, June 1989.
\shape default
Sections 2.
18 and 2.
20.
\layout Bibliography
[2] M.
L.
J.
Hautus, D.
A.
Klarner: The diagonal of a double power series.
\shape italic
Duke Math.
J.
\shape default
\series bold
38
\series default
(1971), 229-235.
\layout Bibliography
[3] C.
Chevalley: Introduction to the theory of algebraic functions of one variable.
\shape italic
Mathematical Surveys VI.
American Mathematical Society.
\layout Bibliography
[4] Jean-Pierre Serre: Corps locaux.
\shape italic
Hermann.
Paris
\shape default
1968.
\layout Bibliography
[5] Martin Eichler: Introduction to the theory of algebraic numbers and
functions.
\shape italic
Academic Press.
New York, London
\shape default
1966.