763 lines
13 KiB
763 lines
13 KiB
#This file was created by <bruno> Sun Feb 16 14:19:06 1997
|
|
#LyX 0.10 (C) 1995 1996 Matthias Ettrich and the LyX Team
|
|
\lyxformat 2.10
|
|
\textclass article
|
|
\begin_preamble
|
|
\catcode`@=11 % @ ist ab jetzt ein gewoehnlicher Buchstabe
|
|
\def\Res{\mathop{\operator@font Res}}
|
|
\def\ll{\langle\!\langle}
|
|
\def\gg{\rangle\!\rangle}
|
|
\catcode`@=12 % @ ist ab jetzt wieder ein Sonderzeichen
|
|
|
|
\end_preamble
|
|
\language default
|
|
\inputencoding latin1
|
|
\fontscheme default
|
|
\epsfig dvips
|
|
\papersize a4paper
|
|
\paperfontsize 12
|
|
\baselinestretch 1.00
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\quotes_language english
|
|
\quotes_times 2
|
|
\paperorientation portrait
|
|
\papercolumns 0
|
|
\papersides 1
|
|
\paperpagestyle plain
|
|
|
|
\layout LaTeX Title
|
|
|
|
The diagonal of a rational function
|
|
\layout Description
|
|
|
|
Theorem:
|
|
\layout Standard
|
|
|
|
Let
|
|
\begin_inset Formula \( M \)
|
|
\end_inset
|
|
|
|
be a torsion-free
|
|
\begin_inset Formula \( R \)
|
|
\end_inset
|
|
|
|
-module, and
|
|
\begin_inset Formula \( d>0 \)
|
|
\end_inset
|
|
|
|
.
|
|
Let
|
|
\begin_inset Formula
|
|
\[
|
|
f=\sum _{n_{1},...,n_{d}}a_{n_{1},...,n_{d}}\, x_{1}^{n_{1}}\cdots x_{d}^{n_{d}}\in M[[x_{1},\ldots x_{d}]]\]
|
|
|
|
\end_inset
|
|
|
|
be a rational function, i.
|
|
e.
|
|
there are
|
|
\begin_inset Formula \( P\in M[x_{1},\ldots ,x_{d}] \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( Q\in R[x_{1},\ldots ,x_{d}] \)
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula \( Q(0,\ldots ,0)=1 \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( Q\cdot f=P \)
|
|
\end_inset
|
|
|
|
.
|
|
Then the full diagonal of
|
|
\begin_inset Formula \( f \)
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
g=\sum ^{\infty }_{n=0}a_{n,\ldots ,n}\, x_{1}^{n}\]
|
|
|
|
\end_inset
|
|
|
|
is a D-finite element of
|
|
\begin_inset Formula \( M[[x_{1}]] \)
|
|
\end_inset
|
|
|
|
, w.
|
|
r.
|
|
t.
|
|
|
|
\begin_inset Formula \( R[x_{1}] \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( \{\partial _{x_{1}}\} \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Description
|
|
|
|
Proof:
|
|
\layout Standard
|
|
|
|
From the hypotheses,
|
|
\begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
|
|
\end_inset
|
|
|
|
is a torsion-free differential module over
|
|
\begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
|
|
\end_inset
|
|
|
|
w.
|
|
r.
|
|
t.
|
|
the derivatives
|
|
\begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
|
|
\end_inset
|
|
|
|
, and
|
|
\begin_inset Formula \( f \)
|
|
\end_inset
|
|
|
|
is a D-finite element of
|
|
\begin_inset Formula \( M[[x_{1},\ldots ,x_{d}]] \)
|
|
\end_inset
|
|
|
|
over
|
|
\begin_inset Formula \( R[x_{1},\ldots ,x_{d}] \)
|
|
\end_inset
|
|
|
|
w.
|
|
r.
|
|
t.
|
|
|
|
\begin_inset Formula \( \{\partial _{x_{1}},\ldots ,\partial _{x_{d}}\} \)
|
|
\end_inset
|
|
|
|
.
|
|
Now apply the general diagonal theorem ([1], section 2.
|
|
18)
|
|
\begin_inset Formula \( d-1 \)
|
|
\end_inset
|
|
|
|
times.
|
|
|
|
\layout Description
|
|
|
|
Theorem:
|
|
\layout Standard
|
|
|
|
Let
|
|
\begin_inset Formula \( R \)
|
|
\end_inset
|
|
|
|
be an integral domain of characteristic 0 and
|
|
\begin_inset Formula \( M \)
|
|
\end_inset
|
|
|
|
simultaneously a torsion-free
|
|
\begin_inset Formula \( R \)
|
|
\end_inset
|
|
|
|
-module and a commutative
|
|
\begin_inset Formula \( R \)
|
|
\end_inset
|
|
|
|
-algebra without zero divisors.
|
|
Let
|
|
\begin_inset Formula
|
|
\[
|
|
f=\sum _{m,n\geq 0}a_{m,n}x^{m}y^{n}\in M[[x,y]]\]
|
|
|
|
\end_inset
|
|
|
|
be a rational function.
|
|
Then the diagonal of
|
|
\begin_inset Formula \( f \)
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
g=\sum ^{\infty }_{n=0}a_{n,n}\, x^{n}\]
|
|
|
|
\end_inset
|
|
|
|
is algebraic over
|
|
\begin_inset Formula \( R[x] \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Description
|
|
|
|
Motivation
|
|
\protected_separator
|
|
of
|
|
\protected_separator
|
|
proof:
|
|
\layout Standard
|
|
|
|
The usual proof ([2]) uses complex analysis and works only for
|
|
\begin_inset Formula \( R=M=C \)
|
|
\end_inset
|
|
|
|
.
|
|
The idea is to compute
|
|
\begin_inset Formula
|
|
\[
|
|
g(x^{2})=\frac{1}{2\pi i}\oint _{|z|=1}f(xz,\frac{x}{z})\frac{dz}{z}\]
|
|
|
|
\end_inset
|
|
|
|
This integral, whose integrand is a rational function in
|
|
\begin_inset Formula \( x \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( z \)
|
|
\end_inset
|
|
|
|
, is calculated using the residue theorem.
|
|
Since
|
|
\begin_inset Formula \( f(x,y) \)
|
|
\end_inset
|
|
|
|
is continuous at
|
|
\begin_inset Formula \( (0,0) \)
|
|
\end_inset
|
|
|
|
, there is a
|
|
\begin_inset Formula \( \delta >0 \)
|
|
\end_inset
|
|
|
|
such that
|
|
\begin_inset Formula \( f(x,y)\neq \infty \)
|
|
\end_inset
|
|
|
|
for
|
|
\begin_inset Formula \( |x|<\delta \)
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula \( |y|<\delta \)
|
|
\end_inset
|
|
|
|
.
|
|
It follows that for all
|
|
\begin_inset Formula \( \varepsilon >0 \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( |x|<\delta \varepsilon \)
|
|
\end_inset
|
|
|
|
all the poles of
|
|
\begin_inset Formula \( f(xz,\frac{x}{z}) \)
|
|
\end_inset
|
|
|
|
are contained in
|
|
\begin_inset Formula \( \{z:|z|<\varepsilon \}\cup \{z:|z|>\frac{1}{\varepsilon }\} \)
|
|
\end_inset
|
|
|
|
.
|
|
Thus the poles of
|
|
\begin_inset Formula \( f(xz,\frac{x}{z}) \)
|
|
\end_inset
|
|
|
|
, all algebraic functions of
|
|
\begin_inset Formula \( x \)
|
|
\end_inset
|
|
|
|
-- let's call them
|
|
\begin_inset Formula \( \zeta _{1}(x),\ldots \zeta _{s}(x) \)
|
|
\end_inset
|
|
|
|
--, can be divided up into those for which
|
|
\begin_inset Formula \( |\zeta _{i}(x)|=O(|x|) \)
|
|
\end_inset
|
|
|
|
as
|
|
\begin_inset Formula \( x\rightarrow 0 \)
|
|
\end_inset
|
|
|
|
and those for which
|
|
\begin_inset Formula \( \frac{1}{|\zeta _{i}(x)|}=O(|x|) \)
|
|
\end_inset
|
|
|
|
as
|
|
\begin_inset Formula \( x\rightarrow 0 \)
|
|
\end_inset
|
|
|
|
.
|
|
It follows from the residue theorem that for
|
|
\begin_inset Formula \( |x|<\delta \)
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
g(x^{2})=\sum _{\zeta =0\vee \zeta =O(|x|)}\Res _{z=\zeta }\, f(xz,\frac{x}{z})\]
|
|
|
|
\end_inset
|
|
|
|
This is algebraic over
|
|
\begin_inset Formula \( C(x) \)
|
|
\end_inset
|
|
|
|
.
|
|
Hence
|
|
\begin_inset Formula \( g(x) \)
|
|
\end_inset
|
|
|
|
is algebraic over
|
|
\begin_inset Formula \( C(x^{1/2}) \)
|
|
\end_inset
|
|
|
|
, hence also algebraic over
|
|
\begin_inset Formula \( C(x) \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Description
|
|
|
|
Proof:
|
|
\layout Standard
|
|
|
|
Let
|
|
\begin_inset Formula
|
|
\[
|
|
h(x,z):=f(xz,\frac{x}{z})=\sum ^{\infty }_{m,n=0}a_{m,n}x^{m+n}z^{m-n}\in M[[xz,xz^{-1}]]\]
|
|
|
|
\end_inset
|
|
|
|
Then
|
|
\begin_inset Formula \( g(x^{2}) \)
|
|
\end_inset
|
|
|
|
is the coefficient of
|
|
\begin_inset Formula \( z^{0} \)
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset Formula \( h(x,z) \)
|
|
\end_inset
|
|
|
|
.
|
|
Let
|
|
\begin_inset Formula \( N(x,z):=z^{d}Q(xz,\frac{x}{z}) \)
|
|
\end_inset
|
|
|
|
(with
|
|
\begin_inset Formula \( d:=\max (\deg _{y}P,\deg _{y}Q) \)
|
|
\end_inset
|
|
|
|
) be
|
|
\begin_inset Quotes eld
|
|
\end_inset
|
|
|
|
the denominator
|
|
\begin_inset Quotes erd
|
|
\end_inset
|
|
|
|
of
|
|
\begin_inset Formula \( h(x,z) \)
|
|
\end_inset
|
|
|
|
.
|
|
We have
|
|
\begin_inset Formula \( N(x,z)\in R[x,z] \)
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula \( N\neq 0 \)
|
|
\end_inset
|
|
|
|
(because
|
|
\begin_inset Formula \( N(0,z)=z^{d} \)
|
|
\end_inset
|
|
|
|
).
|
|
Let
|
|
\begin_inset Formula \( K \)
|
|
\end_inset
|
|
|
|
be the quotient field of
|
|
\begin_inset Formula \( R \)
|
|
\end_inset
|
|
|
|
.
|
|
Thus
|
|
\begin_inset Formula \( N(x,z)\in K[x][z]\setminus \{0\} \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
|
|
It is well-known (see [3], p.
|
|
64, or [4], chap.
|
|
IV, §2, prop.
|
|
8, or [5], chap.
|
|
III, §1) that the splitting field of
|
|
\begin_inset Formula \( N(x,z) \)
|
|
\end_inset
|
|
|
|
over
|
|
\begin_inset Formula \( K(x) \)
|
|
\end_inset
|
|
|
|
can be embedded into a field
|
|
\begin_inset Formula \( L((x^{1/r})) \)
|
|
\end_inset
|
|
|
|
, where
|
|
\begin_inset Formula \( r \)
|
|
\end_inset
|
|
|
|
is a positive integer and
|
|
\begin_inset Formula \( L \)
|
|
\end_inset
|
|
|
|
is a finite-algebraic extension field of
|
|
\begin_inset Formula \( K \)
|
|
\end_inset
|
|
|
|
, i.
|
|
e.
|
|
a simple algebraic extension
|
|
\begin_inset Formula \( L=K(\alpha )=K\alpha ^{0}+\cdots +K\alpha ^{u-1} \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
|
|
|
|
\begin_inset Formula \( \widetilde{M}:=(R\setminus \{0\})^{-1}\cdot M \)
|
|
\end_inset
|
|
|
|
is a
|
|
\begin_inset Formula \( K \)
|
|
\end_inset
|
|
|
|
-vector space and a commutative
|
|
\begin_inset Formula \( K \)
|
|
\end_inset
|
|
|
|
-algebra without zero divisors.
|
|
|
|
\begin_inset Formula \( \widehat{M}:=\widetilde{M}\alpha ^{0}+\cdots +\widetilde{M}\alpha ^{u-1} \)
|
|
\end_inset
|
|
|
|
is an
|
|
\begin_inset Formula \( L \)
|
|
\end_inset
|
|
|
|
-vector space and a commutative
|
|
\begin_inset Formula \( L \)
|
|
\end_inset
|
|
|
|
-algebra without zero divisors.
|
|
|
|
\layout Standard
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\widehat{M}\ll x,z\gg & := & \widehat{M}[[x^{1/r}\cdot z,x^{1/r}\cdot z^{-1},x^{1/r}]][x^{-1/r}]\\
|
|
& = & \left\{ \sum _{m,n}c_{m,n}x^{m/r}z^{n}:c_{m,n}\neq 0\Rightarrow |n|\leq m+O(1)\right\}
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
is an
|
|
\begin_inset Formula \( L \)
|
|
\end_inset
|
|
|
|
-algebra which contains
|
|
\begin_inset Formula \( \widehat{M}((x^{1/r})) \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
|
|
Since
|
|
\begin_inset Formula \( N(x,z) \)
|
|
\end_inset
|
|
|
|
splits into linear factors in
|
|
\begin_inset Formula \( L((x^{1/r}))[z] \)
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula \( N(x,z)=l\prod ^{s}_{i=1}(z-\zeta _{i}(x))^{k_{i}} \)
|
|
\end_inset
|
|
|
|
, there exists a partial fraction decomposition of
|
|
\begin_inset Formula \( h(x,z)=\frac{P(xz,\frac{x}{z})}{Q(xz,\frac{x}{z})}=\frac{z^{d}P(xz,\frac{x}{z})}{N(x,z)} \)
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset Formula \( \widehat{M}\ll x,z\gg \)
|
|
\end_inset
|
|
|
|
:
|
|
\layout Standard
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
h(x,z)=\sum ^{l}_{j=0}P_{j}(x)z^{j}+\sum ^{s}_{i=1}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}}\]
|
|
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula \( P_{j}(x),P_{i,k}(x)\in \widehat{M}((x^{1/r})) \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
|
|
Recall that we are looking for the coefficient of
|
|
\begin_inset Formula \( z^{0} \)
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset Formula \( h(x,z) \)
|
|
\end_inset
|
|
|
|
.
|
|
We compute it separately for each summand.
|
|
|
|
\layout Standard
|
|
|
|
If
|
|
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula \( a\in L\setminus \{0\} \)
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula \( m>0 \)
|
|
\end_inset
|
|
|
|
, or
|
|
\begin_inset Formula \( \zeta _{i}(x)=0 \)
|
|
\end_inset
|
|
|
|
, we have
|
|
\layout Standard
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\frac{1}{(z-\zeta _{i}(x))^{k}} & = & \frac{1}{z^{k}}\cdot \frac{1}{\left( 1-\frac{\zeta _{i}(x)}{z}\right) ^{k}}\\
|
|
& = & \frac{1}{z^{k}}\cdot \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\left( \frac{\zeta _{i}(x)}{z}\right) ^{j}\\
|
|
& = & \sum ^{\infty }_{j=0}{k-1+j\choose k-1}\frac{\zeta _{i}(x)^{j}}{z^{k+j}}
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
hence the coefficient of
|
|
\begin_inset Formula \( z^{0} \)
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
|
|
\end_inset
|
|
|
|
is
|
|
\begin_inset Formula \( 0 \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
\cursor 59
|
|
If
|
|
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula \( a\in L\setminus \{0\} \)
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula \( m<0 \)
|
|
\end_inset
|
|
|
|
, we have
|
|
\begin_inset Formula
|
|
\[
|
|
\frac{1}{(z-\zeta _{i}(x))^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \frac{1}{\left( 1-\frac{z}{\zeta _{i}(x)}\right) ^{k}}=\frac{1}{(-\zeta _{i}(x))^{k}}\cdot \sum _{j=0}^{\infty }{k-1+j\choose k-1}\left( \frac{z}{\zeta _{i}(x)}\right) ^{j}\]
|
|
|
|
\end_inset
|
|
|
|
hence the coefficient of
|
|
\begin_inset Formula \( z^{0} \)
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset Formula \( \frac{P_{i,k}(x)}{(z-\zeta _{i}(x))^{k}} \)
|
|
\end_inset
|
|
|
|
is
|
|
\begin_inset Formula \( \frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}} \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Standard
|
|
|
|
The case
|
|
\begin_inset Formula \( \zeta _{i}(x)=ax^{m/r}+... \)
|
|
\end_inset
|
|
|
|
with
|
|
\begin_inset Formula \( a\in L\setminus \{0\} \)
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula \( m=0 \)
|
|
\end_inset
|
|
|
|
, cannot occur, because it would imply
|
|
\begin_inset Formula \( 0=N(0,\zeta _{i}(0))=N(0,a)=a^{d}. \)
|
|
\end_inset
|
|
|
|
|
|
\layout Standard
|
|
|
|
Altogether we have
|
|
\begin_inset Formula
|
|
\[
|
|
g(x^{2})=[z^{0}]h(x,z)=P_{0}(x)+\sum _{\frac{1}{\zeta _{i}(x)}=o(x)}\sum ^{k_{i}}_{k=1}\frac{P_{i,k}(x)}{(-\zeta _{i}(x))^{k}}\in \widehat{M}((x^{1/r}))\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\layout Standard
|
|
|
|
Since all
|
|
\begin_inset Formula \( \zeta _{i}(x) \)
|
|
\end_inset
|
|
|
|
(in
|
|
\begin_inset Formula \( L((x^{1/r})) \)
|
|
\end_inset
|
|
|
|
) and all
|
|
\begin_inset Formula \( P_{j}(x),P_{i,k}(x) \)
|
|
\end_inset
|
|
|
|
(in
|
|
\begin_inset Formula \( \widehat{M}((x^{1/r})) \)
|
|
\end_inset
|
|
|
|
) are algebraic over
|
|
\begin_inset Formula \( K(x) \)
|
|
\end_inset
|
|
|
|
, the same holds also for
|
|
\begin_inset Formula \( g(x^{2}) \)
|
|
\end_inset
|
|
|
|
.
|
|
Hence
|
|
\begin_inset Formula \( g(x) \)
|
|
\end_inset
|
|
|
|
is algebraic over
|
|
\begin_inset Formula \( K(x^{1/2}) \)
|
|
\end_inset
|
|
|
|
, hence also over
|
|
\begin_inset Formula \( K(x) \)
|
|
\end_inset
|
|
|
|
.
|
|
After clearing denominators, we finally conclude that
|
|
\begin_inset Formula \( g(x) \)
|
|
\end_inset
|
|
|
|
is algebraic over
|
|
\begin_inset Formula \( R[x] \)
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\layout Bibliography
|
|
|
|
[1] Bruno Haible: D-finite power series in several variables.
|
|
|
|
\shape italic
|
|
Diploma thesis, University of Karlsruhe, June 1989.
|
|
|
|
\shape default
|
|
Sections 2.
|
|
18 and 2.
|
|
20.
|
|
|
|
\layout Bibliography
|
|
|
|
[2] M.
|
|
L.
|
|
J.
|
|
Hautus, D.
|
|
A.
|
|
Klarner: The diagonal of a double power series.
|
|
|
|
\shape italic
|
|
Duke Math.
|
|
J.
|
|
|
|
\shape default
|
|
|
|
\series bold
|
|
38
|
|
\series default
|
|
(1971), 229-235.
|
|
|
|
\layout Bibliography
|
|
|
|
[3] C.
|
|
Chevalley: Introduction to the theory of algebraic functions of one variable.
|
|
|
|
\shape italic
|
|
Mathematical Surveys VI.
|
|
American Mathematical Society.
|
|
|
|
\layout Bibliography
|
|
|
|
[4] Jean-Pierre Serre: Corps locaux.
|
|
|
|
\shape italic
|
|
Hermann.
|
|
Paris
|
|
\shape default
|
|
1968.
|
|
|
|
\layout Bibliography
|
|
|
|
[5] Martin Eichler: Introduction to the theory of algebraic numbers and
|
|
functions.
|
|
|
|
\shape italic
|
|
Academic Press.
|
|
New York, London
|
|
\shape default
|
|
1966.
|
|
|