You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

488 lines
14 KiB

// Univariate Polynomials over some subring of the numbers.
#include "cln/SV_number.h"
#include "cln/number.h"
#include "cln/integer.h"
#include "cln/exception.h"
namespace cln {
// Assume a ring is a number ring.
inline cl_heap_number_ring* TheNumberRing (const cl_ring& R)
{ return (cl_heap_number_ring*) R.heappointer; }
// Normalize a vector: remove leading zero coefficients.
// The result vector is known to have length len > 0.
static inline void num_normalize (cl_number_ring_ops<cl_number>& ops, cl_SV_number& result, uintL len)
{
if (ops.zerop(result[len-1])) {
len--;
while (len > 0) {
if (!ops.zerop(result[len-1]))
break;
len--;
}
var cl_SV_number newresult = cl_SV_number(cl_make_heap_SV_number_uninit(len));
for (var sintL i = len-1; i >= 0; i--)
init1(cl_number, newresult[i]) (result[i]);
result = newresult;
}
}
static void num_fprint (cl_heap_univpoly_ring* UPR, std::ostream& stream, const _cl_UP& x)
{{
DeclarePoly(cl_SV_number,x);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
if (xlen == 0)
fprint(stream, "0");
else {
var const cl_ring& R = UPR->basering();
var cl_string varname = get_varname(UPR);
for (var sintL i = xlen-1; i >= 0; i--)
if (!ops.zerop(x[i])) {
if (i < xlen-1)
fprint(stream, " + ");
fprint(stream, cl_ring_element(R,x[i]));
if (i > 0) {
fprint(stream, "*");
fprint(stream, varname);
if (i != 1) {
fprint(stream, "^");
fprintdecimal(stream, i);
}
}
}
}
}}
static bool num_equal (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y)
{{
DeclarePoly(cl_SV_number,x);
DeclarePoly(cl_SV_number,y);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
var sintL ylen = y.size();
if (!(xlen == ylen))
return false;
for (var sintL i = xlen-1; i >= 0; i--)
if (!ops.equal(x[i],y[i]))
return false;
return true;
}}
static const _cl_UP num_zero (cl_heap_univpoly_ring* UPR)
{
return _cl_UP(UPR, cl_null_SV_number);
}
static bool num_zerop (cl_heap_univpoly_ring* UPR, const _cl_UP& x)
{
unused UPR;
{ DeclarePoly(cl_SV_number,x);
var sintL xlen = x.size();
if (xlen == 0)
return true;
else
return false;
}}
static const _cl_UP num_plus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y)
{{
DeclarePoly(cl_SV_number,x);
DeclarePoly(cl_SV_number,y);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
var sintL ylen = y.size();
if (xlen == 0)
return _cl_UP(UPR, y);
if (ylen == 0)
return _cl_UP(UPR, x);
// Now xlen > 0, ylen > 0.
if (xlen > ylen) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen));
var sintL i;
for (i = xlen-1; i >= ylen; i--)
init1(cl_number, result[i]) (x[i]);
for (i = ylen-1; i >= 0; i--)
init1(cl_number, result[i]) (ops.plus(x[i],y[i]));
return _cl_UP(UPR, result);
}
if (xlen < ylen) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(ylen));
var sintL i;
for (i = ylen-1; i >= xlen; i--)
init1(cl_number, result[i]) (y[i]);
for (i = xlen-1; i >= 0; i--)
init1(cl_number, result[i]) (ops.plus(x[i],y[i]));
return _cl_UP(UPR, result);
}
// Now xlen = ylen > 0. Add and normalize simultaneously.
for (var sintL i = xlen-1; i >= 0; i--) {
var cl_number hicoeff = ops.plus(x[i],y[i]);
if (!ops.zerop(hicoeff)) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(i+1));
init1(cl_number, result[i]) (hicoeff);
for (i-- ; i >= 0; i--)
init1(cl_number, result[i]) (ops.plus(x[i],y[i]));
return _cl_UP(UPR, result);
}
}
return _cl_UP(UPR, cl_null_SV_number);
}}
static const _cl_UP num_uminus (cl_heap_univpoly_ring* UPR, const _cl_UP& x)
{{
DeclarePoly(cl_SV_number,x);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
if (xlen == 0)
return _cl_UP(UPR, x);
// Now xlen > 0.
// Negate. No normalization necessary, since the degree doesn't change.
var sintL i = xlen-1;
var cl_number hicoeff = ops.uminus(x[i]);
if (ops.zerop(hicoeff)) throw runtime_exception();
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen));
init1(cl_number, result[i]) (hicoeff);
for (i-- ; i >= 0; i--)
init1(cl_number, result[i]) (ops.uminus(x[i]));
return _cl_UP(UPR, result);
}}
static const _cl_UP num_minus (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y)
{{
DeclarePoly(cl_SV_number,x);
DeclarePoly(cl_SV_number,y);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
var sintL ylen = y.size();
if (ylen == 0)
return _cl_UP(UPR, x);
if (xlen == 0)
return num_uminus(UPR, _cl_UP(UPR, y));
// Now xlen > 0, ylen > 0.
if (xlen > ylen) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(xlen));
var sintL i;
for (i = xlen-1; i >= ylen; i--)
init1(cl_number, result[i]) (x[i]);
for (i = ylen-1; i >= 0; i--)
init1(cl_number, result[i]) (ops.minus(x[i],y[i]));
return _cl_UP(UPR, result);
}
if (xlen < ylen) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(ylen));
var sintL i;
for (i = ylen-1; i >= xlen; i--)
init1(cl_number, result[i]) (ops.uminus(y[i]));
for (i = xlen-1; i >= 0; i--)
init1(cl_number, result[i]) (ops.minus(x[i],y[i]));
return _cl_UP(UPR, result);
}
// Now xlen = ylen > 0. Add and normalize simultaneously.
for (var sintL i = xlen-1; i >= 0; i--) {
var cl_number hicoeff = ops.minus(x[i],y[i]);
if (!ops.zerop(hicoeff)) {
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(i+1));
init1(cl_number, result[i]) (hicoeff);
for (i-- ; i >= 0; i--)
init1(cl_number, result[i]) (ops.minus(x[i],y[i]));
return _cl_UP(UPR, result);
}
}
return _cl_UP(UPR, cl_null_SV_number);
}}
static const _cl_UP num_one (cl_heap_univpoly_ring* UPR)
{
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(1));
init1(cl_number, result[0]) (1);
return _cl_UP(UPR, result);
}
static const _cl_UP num_canonhom (cl_heap_univpoly_ring* UPR, const cl_I& x)
{
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(1));
init1(cl_number, result[0]) (x);
return _cl_UP(UPR, result);
}
static const _cl_UP num_mul (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const _cl_UP& y)
{{
DeclarePoly(cl_SV_number,x);
DeclarePoly(cl_SV_number,y);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
var sintL ylen = y.size();
if (xlen == 0)
return _cl_UP(UPR, x);
if (ylen == 0)
return _cl_UP(UPR, y);
// Multiply.
var sintL len = xlen + ylen - 1;
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(len));
if (xlen < ylen) {
{
var sintL i = xlen-1;
var cl_number xi = x[i];
for (sintL j = ylen-1; j >= 0; j--)
init1(cl_number, result[i+j]) (ops.mul(xi,y[j]));
}
for (sintL i = xlen-2; i >= 0; i--) {
var cl_number xi = x[i];
for (sintL j = ylen-1; j > 0; j--)
result[i+j] = ops.plus(result[i+j],ops.mul(xi,y[j]));
/* j=0 */ init1(cl_number, result[i]) (ops.mul(xi,y[0]));
}
} else {
{
var sintL j = ylen-1;
var cl_number yj = y[j];
for (sintL i = xlen-1; i >= 0; i--)
init1(cl_number, result[i+j]) (ops.mul(x[i],yj));
}
for (sintL j = ylen-2; j >= 0; j--) {
var cl_number yj = y[j];
for (sintL i = xlen-1; i > 0; i--)
result[i+j] = ops.plus(result[i+j],ops.mul(x[i],yj));
/* i=0 */ init1(cl_number, result[j]) (ops.mul(x[0],yj));
}
}
// Normalize (not necessary in integral domains).
//num_normalize(ops,result,len);
if (ops.zerop(result[len-1])) throw runtime_exception();
return _cl_UP(UPR, result);
}}
static const _cl_UP num_square (cl_heap_univpoly_ring* UPR, const _cl_UP& x)
{{
DeclarePoly(cl_SV_number,x);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
if (xlen == 0)
return cl_UP(UPR, x);
var sintL len = 2*xlen-1;
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(len));
if (xlen > 1) {
// Loop through all 0 <= j < i <= xlen-1.
{
var sintL i = xlen-1;
var cl_number xi = x[i];
for (sintL j = i-1; j >= 0; j--)
init1(cl_number, result[i+j]) (ops.mul(xi,x[j]));
}
{for (sintL i = xlen-2; i >= 1; i--) {
var cl_number xi = x[i];
for (sintL j = i-1; j >= 1; j--)
result[i+j] = ops.plus(result[i+j],ops.mul(xi,x[j]));
/* j=0 */ init1(cl_number, result[i]) (ops.mul(xi,x[0]));
}}
// Double.
{for (sintL i = len-2; i >= 1; i--)
result[i] = ops.plus(result[i],result[i]);
}
// Add squares.
init1(cl_number, result[2*(xlen-1)]) (ops.square(x[xlen-1]));
for (sintL i = xlen-2; i >= 1; i--)
result[2*i] = ops.plus(result[2*i],ops.square(x[i]));
}
init1(cl_number, result[0]) (ops.square(x[0]));
// Normalize (not necessary in integral domains).
//num_normalize(ops,result,len);
if (ops.zerop(result[len-1])) throw runtime_exception();
return _cl_UP(UPR, result);
}}
static const _cl_UP num_exptpos (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const cl_I& y)
{
var _cl_UP a = x;
var cl_I b = y;
while (!oddp(b)) { a = UPR->_square(a); b = b >> 1; }
var _cl_UP c = a;
until (b == 1)
{ b = b >> 1;
a = UPR->_square(a);
if (oddp(b)) { c = UPR->_mul(a,c); }
}
return c;
}
static const _cl_UP num_scalmul (cl_heap_univpoly_ring* UPR, const cl_ring_element& x, const _cl_UP& y)
{
if (!(UPR->basering() == x.ring())) throw runtime_exception();
{
DeclarePoly(cl_number,x);
DeclarePoly(cl_SV_number,y);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL ylen = y.size();
if (ylen == 0)
return _cl_UP(UPR, y);
if (ops.zerop(x))
return _cl_UP(UPR, cl_null_SV_number);
// Now ylen > 0.
// No normalization necessary, since the degree doesn't change.
var cl_SV_number result = cl_SV_number(cl_make_heap_SV_number_uninit(ylen));
for (sintL i = ylen-1; i >= 0; i--)
init1(cl_number, result[i]) (ops.mul(x,y[i]));
return _cl_UP(UPR, result);
}}
static sintL num_degree (cl_heap_univpoly_ring* UPR, const _cl_UP& x)
{
unused UPR;
{ DeclarePoly(cl_SV_number,x);
return (sintL) x.size() - 1;
}}
static sintL num_ldegree (cl_heap_univpoly_ring* UPR, const _cl_UP& x)
{{
DeclarePoly(cl_SV_number,x);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var sintL xlen = x.size();
for (sintL i = 0; i < xlen; i++) {
if (!ops.zerop(x[i]))
return i;
}
return -1;
}}
static const _cl_UP num_monomial (cl_heap_univpoly_ring* UPR, const cl_ring_element& x, uintL e)
{
if (!(UPR->basering() == x.ring())) throw runtime_exception();
{ DeclarePoly(cl_number,x);
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
if (ops.zerop(x))
return _cl_UP(UPR, cl_null_SV_number);
else {
var sintL len = e+1;
var cl_SV_number result = cl_SV_number(len);
result[e] = x;
return _cl_UP(UPR, result);
}
}}
static const cl_ring_element num_coeff (cl_heap_univpoly_ring* UPR, const _cl_UP& x, uintL index)
{{
DeclarePoly(cl_SV_number,x);
var cl_heap_number_ring* R = TheNumberRing(UPR->basering());
if (index < x.size())
return cl_ring_element(R, x[index]);
else
return R->zero();
}}
static const _cl_UP num_create (cl_heap_univpoly_ring* UPR, sintL deg)
{
if (deg < 0)
return _cl_UP(UPR, cl_null_SV_number);
else {
var sintL len = deg+1;
return _cl_UP(UPR, cl_SV_number(len));
}
}
static void num_set_coeff (cl_heap_univpoly_ring* UPR, _cl_UP& x, uintL index, const cl_ring_element& y)
{{
DeclareMutablePoly(cl_SV_number,x);
if (!(UPR->basering() == y.ring())) throw runtime_exception();
{ DeclarePoly(cl_number,y);
if (!(index < x.size())) throw runtime_exception();
x[index] = y;
}}}
static void num_finalize (cl_heap_univpoly_ring* UPR, _cl_UP& x)
{{
DeclareMutablePoly(cl_SV_number,x); // NB: x is modified by reference!
var cl_number_ring_ops<cl_number>& ops = *TheNumberRing(UPR->basering())->ops;
var uintL len = x.size();
if (len > 0)
num_normalize(ops,x,len);
}}
static const cl_ring_element num_eval (cl_heap_univpoly_ring* UPR, const _cl_UP& x, const cl_ring_element& y)
{{
// Method:
// If x = 0, return 0.
// If y = 0, return x[0].
// Else compute (...(x[len-1]*y+x[len-2])*y ...)*y + x[0].
DeclarePoly(cl_SV_number,x);
if (!(UPR->basering() == y.ring())) throw runtime_exception();
{ DeclarePoly(cl_number,y);
var cl_heap_number_ring* R = TheNumberRing(UPR->basering());
var cl_number_ring_ops<cl_number>& ops = *R->ops;
var uintL len = x.size();
if (len==0)
return R->zero();
if (ops.zerop(y))
return cl_ring_element(R, x[0]);
var sintL i = len-1;
var cl_number z = x[i];
for ( ; --i >= 0; )
z = ops.plus(ops.mul(z,y),x[i]);
return cl_ring_element(R, z);
}}}
static cl_univpoly_setops num_setops = {
num_fprint,
num_equal
};
static cl_univpoly_addops num_addops = {
num_zero,
num_zerop,
num_plus,
num_minus,
num_uminus
};
static cl_univpoly_mulops num_mulops = {
num_one,
num_canonhom,
num_mul,
num_square,
num_exptpos
};
static cl_univpoly_modulops num_modulops = {
num_scalmul
};
static cl_univpoly_polyops num_polyops = {
num_degree,
num_ldegree,
num_monomial,
num_coeff,
num_create,
num_set_coeff,
num_finalize,
num_eval
};
class cl_heap_num_univpoly_ring : public cl_heap_univpoly_ring {
SUBCLASS_cl_heap_univpoly_ring()
public:
// Constructor.
cl_heap_num_univpoly_ring (const cl_ring& r);
// Destructor.
~cl_heap_num_univpoly_ring () {}
};
static void cl_heap_num_univpoly_ring_destructor (cl_heap* pointer)
{
(*(cl_heap_num_univpoly_ring*)pointer).~cl_heap_num_univpoly_ring();
}
cl_class cl_class_num_univpoly_ring = {
cl_heap_num_univpoly_ring_destructor,
cl_class_flags_univpoly_ring
};
// Constructor.
inline cl_heap_num_univpoly_ring::cl_heap_num_univpoly_ring (const cl_ring& r)
: cl_heap_univpoly_ring (r, &num_setops, &num_addops, &num_mulops, &num_modulops, &num_polyops)
{
type = &cl_class_num_univpoly_ring;
}
} // namespace cln