You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
14 KiB
358 lines
14 KiB
// Public rational number operations.
|
|
|
|
#ifndef _CL_RATIONAL_H
|
|
#define _CL_RATIONAL_H
|
|
|
|
#include "cln/number.h"
|
|
#include "cln/rational_class.h"
|
|
#include "cln/integer_class.h"
|
|
|
|
namespace cln {
|
|
|
|
CL_DEFINE_AS_CONVERSION(cl_RA)
|
|
|
|
|
|
// numerator(r) liefert den Zähler der rationalen Zahl r.
|
|
extern const cl_I numerator (const cl_RA& r);
|
|
|
|
// denominator(r) liefert den Nenner (> 0) der rationalen Zahl r.
|
|
extern const cl_I denominator (const cl_RA& r);
|
|
|
|
|
|
// Liefert (- r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA operator- (const cl_RA& r);
|
|
|
|
// (+ r s), wo r und s rationale Zahlen sind.
|
|
extern const cl_RA operator+ (const cl_RA& r, const cl_RA& s);
|
|
// Dem C++-Compiler muß man auch das Folgende sagen:
|
|
inline const cl_RA operator+ (const int x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
inline const cl_RA operator+ (const unsigned int x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
inline const cl_RA operator+ (const long x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
inline const cl_RA operator+ (const unsigned long x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator+ (const long long x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
inline const cl_RA operator+ (const unsigned long long x, const cl_RA& y)
|
|
{ return cl_I(x) + y; }
|
|
#endif
|
|
inline const cl_RA operator+ (const cl_RA& x, const int y)
|
|
{ return x + cl_I(y); }
|
|
inline const cl_RA operator+ (const cl_RA& x, const unsigned int y)
|
|
{ return x + cl_I(y); }
|
|
inline const cl_RA operator+ (const cl_RA& x, const long y)
|
|
{ return x + cl_I(y); }
|
|
inline const cl_RA operator+ (const cl_RA& x, const unsigned long y)
|
|
{ return x + cl_I(y); }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator+ (const cl_RA& x, const long long y)
|
|
{ return x + cl_I(y); }
|
|
inline const cl_RA operator+ (const cl_RA& x, const unsigned long long y)
|
|
{ return x + cl_I(y); }
|
|
#endif
|
|
|
|
// (- r s), wo r und s rationale Zahlen sind.
|
|
extern const cl_RA operator- (const cl_RA& r, const cl_RA& s);
|
|
// Dem C++-Compiler muß man auch das Folgende sagen:
|
|
inline const cl_RA operator- (const int x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
inline const cl_RA operator- (const unsigned int x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
inline const cl_RA operator- (const long x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
inline const cl_RA operator- (const unsigned long x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator- (const long long x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
inline const cl_RA operator- (const unsigned long long x, const cl_RA& y)
|
|
{ return cl_I(x) - y; }
|
|
#endif
|
|
inline const cl_RA operator- (const cl_RA& x, const int y)
|
|
{ return x - cl_I(y); }
|
|
inline const cl_RA operator- (const cl_RA& x, const unsigned int y)
|
|
{ return x - cl_I(y); }
|
|
inline const cl_RA operator- (const cl_RA& x, const long y)
|
|
{ return x - cl_I(y); }
|
|
inline const cl_RA operator- (const cl_RA& x, const unsigned long y)
|
|
{ return x - cl_I(y); }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator- (const cl_RA& x, const long long y)
|
|
{ return x - cl_I(y); }
|
|
inline const cl_RA operator- (const cl_RA& x, const unsigned long long y)
|
|
{ return x - cl_I(y); }
|
|
#endif
|
|
|
|
// (1+ r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA plus1 (const cl_RA& r);
|
|
|
|
// (1- r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA minus1 (const cl_RA& r);
|
|
|
|
// (abs r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA abs (const cl_RA& r);
|
|
|
|
// equal(r,s) vergleicht zwei rationale Zahlen r und s auf Gleichheit.
|
|
extern cl_boolean equal (const cl_RA& r, const cl_RA& s);
|
|
// equal_hashcode(r) liefert einen equal-invarianten Hashcode für r.
|
|
extern uint32 equal_hashcode (const cl_RA& r);
|
|
|
|
// compare(r,s) vergleicht zwei rationale Zahlen r und s.
|
|
// Ergebnis: 0 falls r=s, +1 falls r>s, -1 falls r<s.
|
|
extern cl_signean compare (const cl_RA& r, const cl_RA& s);
|
|
|
|
inline bool operator== (const cl_RA& x, const cl_RA& y)
|
|
{ return equal(x,y); }
|
|
inline bool operator!= (const cl_RA& x, const cl_RA& y)
|
|
{ return !equal(x,y); }
|
|
inline bool operator<= (const cl_RA& x, const cl_RA& y)
|
|
{ return compare(x,y)<=0; }
|
|
inline bool operator< (const cl_RA& x, const cl_RA& y)
|
|
{ return compare(x,y)<0; }
|
|
inline bool operator>= (const cl_RA& x, const cl_RA& y)
|
|
{ return compare(x,y)>=0; }
|
|
inline bool operator> (const cl_RA& x, const cl_RA& y)
|
|
{ return compare(x,y)>0; }
|
|
|
|
// minusp(x) == (< x 0)
|
|
extern cl_boolean minusp (const cl_RA& x);
|
|
|
|
// zerop(x) stellt fest, ob eine rationale Zahl = 0 ist.
|
|
extern cl_boolean zerop (const cl_RA& x);
|
|
|
|
// plusp(x) == (> x 0)
|
|
extern cl_boolean plusp (const cl_RA& x);
|
|
|
|
// Kehrwert (/ r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA recip (const cl_RA& r);
|
|
|
|
// Liefert (* r s), wo r und s rationale Zahlen sind.
|
|
extern const cl_RA operator* (const cl_RA& r, const cl_RA& s);
|
|
// Dem C++-Compiler muß man auch das Folgende sagen:
|
|
inline const cl_RA operator* (const int x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
inline const cl_RA operator* (const unsigned int x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
inline const cl_RA operator* (const long x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
inline const cl_RA operator* (const unsigned long x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator* (const long long x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
inline const cl_RA operator* (const unsigned long long x, const cl_RA& y)
|
|
{ return cl_I(x) * y; }
|
|
#endif
|
|
inline const cl_RA operator* (const cl_RA& x, const int y)
|
|
{ return x * cl_I(y); }
|
|
inline const cl_RA operator* (const cl_RA& x, const unsigned int y)
|
|
{ return x * cl_I(y); }
|
|
inline const cl_RA operator* (const cl_RA& x, const long y)
|
|
{ return x * cl_I(y); }
|
|
inline const cl_RA operator* (const cl_RA& x, const unsigned long y)
|
|
{ return x * cl_I(y); }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator* (const cl_RA& x, const long long y)
|
|
{ return x * cl_I(y); }
|
|
inline const cl_RA operator* (const cl_RA& x, const unsigned long long y)
|
|
{ return x * cl_I(y); }
|
|
#endif
|
|
|
|
// Quadrat (* r r), wo r eine rationale Zahl ist.
|
|
extern const cl_RA square (const cl_RA& r);
|
|
|
|
// Liefert (/ r s), wo r und s rationale Zahlen sind.
|
|
extern const cl_RA operator/ (const cl_RA& r, const cl_RA& s);
|
|
// Dem C++-Compiler muß man auch das Folgende sagen:
|
|
inline const cl_RA operator/ (const int x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
inline const cl_RA operator/ (const unsigned int x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
inline const cl_RA operator/ (const long x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
inline const cl_RA operator/ (const unsigned long x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator/ (const long long x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
inline const cl_RA operator/ (const unsigned long long x, const cl_RA& y)
|
|
{ return cl_I(x) / y; }
|
|
#endif
|
|
inline const cl_RA operator/ (const cl_RA& x, const int y)
|
|
{ return x / cl_I(y); }
|
|
inline const cl_RA operator/ (const cl_RA& x, const unsigned int y)
|
|
{ return x / cl_I(y); }
|
|
inline const cl_RA operator/ (const cl_RA& x, const long y)
|
|
{ return x / cl_I(y); }
|
|
inline const cl_RA operator/ (const cl_RA& x, const unsigned long y)
|
|
{ return x / cl_I(y); }
|
|
#ifdef HAVE_LONGLONG
|
|
inline const cl_RA operator/ (const cl_RA& x, const long long y)
|
|
{ return x / cl_I(y); }
|
|
inline const cl_RA operator/ (const cl_RA& x, const unsigned long long y)
|
|
{ return x / cl_I(y); }
|
|
#endif
|
|
|
|
// Return type for rounding operators.
|
|
// x / y --> (q,r) with x = y*q+r.
|
|
struct cl_RA_div_t {
|
|
cl_I quotient;
|
|
cl_RA remainder;
|
|
// Constructor.
|
|
cl_RA_div_t () {}
|
|
cl_RA_div_t (const cl_I& q, const cl_RA& r) : quotient(q), remainder(r) {}
|
|
};
|
|
|
|
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
|
|
// (q,r) := (floor x)
|
|
// floor2(x)
|
|
// > x: rationale Zahl
|
|
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
|
|
extern const cl_RA_div_t floor2 (const cl_RA& x);
|
|
extern const cl_I floor1 (const cl_RA& x);
|
|
|
|
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
|
|
// (q,r) := (ceiling x)
|
|
// ceiling2(x)
|
|
// > x: rationale Zahl
|
|
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
|
|
extern const cl_RA_div_t ceiling2 (const cl_RA& x);
|
|
extern const cl_I ceiling1 (const cl_RA& x);
|
|
|
|
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
|
|
// (q,r) := (truncate x)
|
|
// truncate2(x)
|
|
// > x: rationale Zahl
|
|
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
|
|
extern const cl_RA_div_t truncate2 (const cl_RA& x);
|
|
extern const cl_I truncate1 (const cl_RA& x);
|
|
|
|
// Liefert ganzzahligen und gebrochenen Anteil einer rationalen Zahl.
|
|
// (q,r) := (round x)
|
|
// round2(x)
|
|
// > x: rationale Zahl
|
|
// < q,r: Quotient q, ein Integer, Rest r, eine rationale Zahl
|
|
extern const cl_RA_div_t round2 (const cl_RA& x);
|
|
extern const cl_I round1 (const cl_RA& x);
|
|
|
|
// floor2(x,y) liefert (floor x y).
|
|
extern const cl_RA_div_t floor2 (const cl_RA& x, const cl_RA& y);
|
|
extern const cl_I floor1 (const cl_RA& x, const cl_RA& y);
|
|
|
|
// ceiling2(x,y) liefert (ceiling x y).
|
|
extern const cl_RA_div_t ceiling2 (const cl_RA& x, const cl_RA& y);
|
|
extern const cl_I ceiling1 (const cl_RA& x, const cl_RA& y);
|
|
|
|
// truncate2(x,y) liefert (truncate x y).
|
|
extern const cl_RA_div_t truncate2 (const cl_RA& x, const cl_RA& y);
|
|
extern const cl_I truncate1 (const cl_RA& x, const cl_RA& y);
|
|
|
|
// round2(x,y) liefert (round x y).
|
|
extern const cl_RA_div_t round2 (const cl_RA& x, const cl_RA& y);
|
|
extern const cl_I round1 (const cl_RA& x, const cl_RA& y);
|
|
|
|
// max(x,y) liefert (max x y), wo x und y rationale Zahlen sind.
|
|
extern const cl_RA max (const cl_RA& x, const cl_RA& y);
|
|
|
|
// min(x,y) liefert (min x y), wo x und y rationale Zahlen sind.
|
|
extern const cl_RA min (const cl_RA& x, const cl_RA& y);
|
|
|
|
// signum(x) liefert (signum x), wo x eine rationale Zahl ist.
|
|
extern const cl_RA signum (const cl_RA& x);
|
|
|
|
// (expt x y), wo x eine rationale Zahl und y ein Integer >0 ist.
|
|
extern const cl_RA expt_pos (const cl_RA& x, uintL y);
|
|
extern const cl_RA expt_pos (const cl_RA& x, const cl_I& y);
|
|
|
|
// (expt x y), wo x eine rationale Zahl und y ein Integer ist.
|
|
extern const cl_RA expt (const cl_RA& x, sintL y);
|
|
extern const cl_RA expt (const cl_RA& x, const cl_I& y);
|
|
|
|
// Stellt fest, ob eine rationale Zahl >=0 das Quadrat einer rationalen Zahl
|
|
// ist.
|
|
// sqrtp(x,&w)
|
|
// > x: eine rationale Zahl >=0
|
|
// < w: rationale Zahl (sqrt x) falls x Quadratzahl
|
|
// < ergebnis: cl_true ..................., cl_false sonst
|
|
extern cl_boolean sqrtp (const cl_RA& x, cl_RA* w);
|
|
|
|
// Stellt fest, ob eine rationale Zahl >=0 die n-te Potenz einer rationalen Zahl
|
|
// ist.
|
|
// rootp(x,n,&w)
|
|
// > x: eine rationale Zahl >=0
|
|
// > n: ein Integer >0
|
|
// < w: exakte n-te Wurzel (expt x (/ n)) falls x eine n-te Potenz
|
|
// < ergebnis: cl_true ........................, cl_false sonst
|
|
extern cl_boolean rootp (const cl_RA& x, uintL n, cl_RA* w);
|
|
extern cl_boolean rootp (const cl_RA& x, const cl_I& n, cl_RA* w);
|
|
|
|
// Liefert zu Integers a>0, b>1 den Logarithmus log(a,b),
|
|
// falls er eine rationale Zahl ist.
|
|
// logp(a,b,&l)
|
|
// > a: ein Integer >0
|
|
// > b: ein Integer >1
|
|
// < l: log(a,b) falls er eine exakte rationale Zahl ist
|
|
// < ergebnis: cl_true ......................................., cl_false sonst
|
|
extern cl_boolean logp (const cl_I& a, const cl_I& b, cl_RA* l);
|
|
|
|
// Liefert zu rationalen Zahlen a>0, b>0 den Logarithmus log(a,b),
|
|
// falls er eine rationale Zahl ist.
|
|
// logp(a,b,&l)
|
|
// > a: eine rationale Zahl >0
|
|
// > b: eine rationale Zahl >0, /=1
|
|
// < l: log(a,b) falls er eine exakte rationale Zahl ist
|
|
// < ergebnis: cl_true ......................................., cl_false sonst
|
|
extern cl_boolean logp (const cl_RA& a, const cl_RA& b, cl_RA* l);
|
|
|
|
// Konversion zu einem C "float".
|
|
extern float float_approx (const cl_RA& x);
|
|
|
|
// Konversion zu einem C "double".
|
|
extern double double_approx (const cl_RA& x);
|
|
|
|
|
|
#ifdef WANT_OBFUSCATING_OPERATORS
|
|
// This could be optimized to use in-place operations.
|
|
inline cl_RA& operator+= (cl_RA& x, const cl_RA& y) { return x = x + y; }
|
|
inline cl_RA& operator+= (cl_RA& x, const int y) { return x = x + y; }
|
|
inline cl_RA& operator+= (cl_RA& x, const unsigned int y) { return x = x + y; }
|
|
inline cl_RA& operator+= (cl_RA& x, const long y) { return x = x + y; }
|
|
inline cl_RA& operator+= (cl_RA& x, const unsigned long y) { return x = x + y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline cl_RA& operator+= (cl_RA& x, const long long y) { return x = x + y; }
|
|
inline cl_RA& operator+= (cl_RA& x, const unsigned long long y) { return x = x + y; }
|
|
#endif
|
|
inline cl_RA& operator++ /* prefix */ (cl_RA& x) { return x = plus1(x); }
|
|
inline void operator++ /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = plus1(x); }
|
|
inline cl_RA& operator-= (cl_RA& x, const cl_RA& y) { return x = x - y; }
|
|
inline cl_RA& operator-= (cl_RA& x, const int y) { return x = x - y; }
|
|
inline cl_RA& operator-= (cl_RA& x, const unsigned int y) { return x = x - y; }
|
|
inline cl_RA& operator-= (cl_RA& x, const long y) { return x = x - y; }
|
|
inline cl_RA& operator-= (cl_RA& x, const unsigned long y) { return x = x - y; }
|
|
#ifdef HAVE_LONGLONG
|
|
inline cl_RA& operator-= (cl_RA& x, const long long y) { return x = x - y; }
|
|
inline cl_RA& operator-= (cl_RA& x, const unsigned long long y) { return x = x - y; }
|
|
#endif
|
|
inline cl_RA& operator-- /* prefix */ (cl_RA& x) { return x = minus1(x); }
|
|
inline void operator-- /* postfix */ (cl_RA& x, int dummy) { (void)dummy; x = minus1(x); }
|
|
inline cl_RA& operator*= (cl_RA& x, const cl_RA& y) { return x = x * y; }
|
|
inline cl_RA& operator/= (cl_RA& x, const cl_RA& y) { return x = x / y; }
|
|
#endif
|
|
|
|
|
|
// Runtime typing support.
|
|
extern cl_class cl_class_ratio;
|
|
|
|
|
|
// Debugging support.
|
|
#ifdef CL_DEBUG
|
|
extern int cl_RA_debug_module;
|
|
CL_FORCE_LINK(cl_RA_debug_dummy, cl_RA_debug_module)
|
|
#endif
|
|
|
|
} // namespace cln
|
|
|
|
#endif /* _CL_RATIONAL_H */
|