You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

658 lines
23 KiB

// Public integer operations.
#ifndef _CL_INTEGER_H
#define _CL_INTEGER_H
#include "cln/number.h"
#include "cln/integer_class.h"
#include "cln/random.h"
namespace cln {
CL_DEFINE_AS_CONVERSION(cl_I)
// Konversion Integer >=0, <2^32 nach uintL.
// Wandelt Integer >=0 in Unsigned Longword um.
// cl_I_to_UL(obj)
// > obj: Integer, sollte >=0, <2^32 sein
// < ergebnis: der Wert des Integer als 32-Bit-Zahl.
extern uint32 cl_I_to_UL (const cl_I& obj);
// Konversion Integer >=-2^31, <2^31 nach sintL.
// Wandelt Integer in Signed Longword um.
// cl_I_to_L(obj)
// > obj: Integer, sollte >=-2^31, <2^31 sein
// < ergebnis: der Wert des Integer als 32-Bit-Zahl.
extern sint32 cl_I_to_L (const cl_I& obj);
// Convert an integer to a C `int' or `unsigned int'.
#if (int_bitsize==32)
inline int cl_I_to_int (const cl_I& x) { return cl_I_to_L(x); }
inline unsigned int cl_I_to_uint (const cl_I& x) { return cl_I_to_UL(x); }
#endif
// Convert an integer to a 64-bit 'quad' type.
#ifdef intQsize
extern uint64 cl_I_to_UQ (const cl_I& obj);
extern sint64 cl_I_to_Q (const cl_I& obj);
#endif
// Convert an integer to a C `long' or `unsigned long'.
#if (long_bitsize==32)
inline long cl_I_to_long (const cl_I& x) { return cl_I_to_L(x); }
inline unsigned long cl_I_to_ulong (const cl_I& x) { return cl_I_to_UL(x); }
#elif (long_bitsize==64)
inline long cl_I_to_long (const cl_I& x) { return cl_I_to_Q(x); }
inline unsigned long cl_I_to_ulong (const cl_I& x) { return cl_I_to_UQ(x); }
#endif
// Convert an integer to a counter type.
#if (intCsize==long_bitsize)
inline uintC cl_I_to_UC (const cl_I& x) { return cl_I_to_ulong(x); }
inline sintC cl_I_to_C (const cl_I& x) { return cl_I_to_long(x); }
#elif (intCsize==int_bitsize)
inline uintC cl_I_to_UC (const cl_I& x) { return cl_I_to_uint(x); }
inline sintC cl_I_to_C (const cl_I& x) { return cl_I_to_int(x); }
#endif
// Convert an integer to an exponent type.
#if (intEsize==intLsize)
inline uintE cl_I_to_UE (const cl_I& x) { return cl_I_to_UL(x); }
inline sintE cl_I_to_E (const cl_I& x) { return cl_I_to_L(x); }
#elif (intEsize==intQsize)
inline uintE cl_I_to_UE (const cl_I& x) { return cl_I_to_UQ(x); }
inline sintE cl_I_to_E (const cl_I& x) { return cl_I_to_Q(x); }
#endif
// Logische Operationen auf Integers:
// (LOGIOR x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logior (const cl_I& x, const cl_I& y);
// (LOGXOR x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logxor (const cl_I& x, const cl_I& y);
// (LOGAND x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logand (const cl_I& x, const cl_I& y);
// (LOGEQV x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logeqv (const cl_I& x, const cl_I& y);
// (LOGNAND x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I lognand (const cl_I& x, const cl_I& y);
// (LOGNOR x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I lognor (const cl_I& x, const cl_I& y);
// (LOGANDC2 x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logandc2 (const cl_I& x, const cl_I& y);
// (LOGANDC1 x y), wenn x, y Integers sind.
// Ergebnis Integer.
inline const cl_I logandc1 (const cl_I& x, const cl_I& y)
{
return logandc2(y,x);
}
// (LOGORC2 x y), wenn x, y Integers sind.
// Ergebnis Integer.
extern const cl_I logorc2 (const cl_I& x, const cl_I& y);
// (LOGORC1 x y), wenn x, y Integers sind.
// Ergebnis Integer.
inline const cl_I logorc1 (const cl_I& x, const cl_I& y)
{
return logorc2(y,x);
}
// (LOGNOT x), wenn x ein Integer sind.
// Ergebnis Integer.
extern const cl_I lognot (const cl_I& x);
// Konstanten für BOOLE:
typedef enum {
boole_clr,
boole_set,
boole_1,
boole_2,
boole_c1,
boole_c2,
boole_and,
boole_ior,
boole_xor,
boole_eqv,
boole_nand,
boole_nor,
boole_andc1,
boole_andc2,
boole_orc1,
boole_orc2
} cl_boole;
// (BOOLE op x y), wenn x und y Integers und op ein Objekt sind.
// Ergebnis Integer.
extern const cl_I boole (cl_boole op, const cl_I& x, const cl_I& y);
// Prüft, ob (LOGTEST x y), wo x und y Integers sind.
// (LOGTEST x y) = (NOT (ZEROP (LOGAND x y))).
// < ergebnis: /=0, falls ja; =0, falls nein.
extern cl_boolean logtest (const cl_I& x, const cl_I& y);
// Prüft, ob (LOGBITP x y), wo x und y Integers sind.
// Ergebnis: /=0, wenn ja; =0, wenn nein.
extern cl_boolean logbitp (uintC x, const cl_I& y);
extern cl_boolean logbitp (const cl_I& x, const cl_I& y);
// Prüft, ob (ODDP x), wo x ein Integer ist.
// Ergebnis: /=0, falls ja; =0, falls nein.
extern cl_boolean oddp (const cl_I& x);
// Prüft, ob (EVENP x), wo x ein Integer ist.
// Ergebnis: /=0, falls ja; =0, falls nein.
inline cl_boolean evenp (const cl_I& x)
{ return (cl_boolean) (!oddp(x)); }
// (ASH x y), wo x und y Integers sind. Ergebnis Integer.
extern const cl_I ash (const cl_I& x, sintC y);
extern const cl_I ash (const cl_I& x, const cl_I& y);
// (LOGCOUNT x), wo x ein Integer ist. Ergebnis uintL.
extern uintC logcount (const cl_I& x);
// (INTEGER-LENGTH x), wo x ein Integer ist. Ergebnis uintL.
extern uintC integer_length (const cl_I& x);
// (ORD2 x) = max{n>=0: 2^n | x }, wo x ein Integer /=0 ist. Ergebnis uintL.
extern uintC ord2 (const cl_I& x);
// power2p(x) stellt fest, ob ein Integer x>0 eine Zweierpotenz ist.
// Ergebnis: n>0, wenn x=2^(n-1), 0 sonst.
extern uintC power2p (const cl_I& x);
inline const cl_I operator| (const cl_I& x, const cl_I& y)
{ return logior(x,y); }
inline const cl_I operator^ (const cl_I& x, const cl_I& y)
{ return logxor(x,y); }
inline const cl_I operator& (const cl_I& x, const cl_I& y)
{ return logand(x,y); }
inline const cl_I operator~ (const cl_I& x)
{ return lognot(x); }
#ifdef WANT_OBFUSCATING_OPERATORS
// This could be optimized to use in-place operations.
inline cl_I& operator|= (cl_I& x, const cl_I& y) { return x = x | y; }
inline cl_I& operator^= (cl_I& x, const cl_I& y) { return x = x ^ y; }
inline cl_I& operator&= (cl_I& x, const cl_I& y) { return x = x & y; }
#endif
// Addition/Subtraktion von Integers
// (1+ x), wo x ein Integer ist. Ergebnis Integer.
extern const cl_I plus1 (const cl_I& x);
// (1- x), wo x ein Integer ist. Ergebnis Integer.
extern const cl_I minus1 (const cl_I& x);
// (+ x y), wo x und y Integers sind. Ergebnis Integer.
extern const cl_I operator+ (const cl_I& x, const cl_I& y);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_I operator+ (const int x, const cl_I& y)
{ return cl_I(x) + y; }
inline const cl_I operator+ (const unsigned int x, const cl_I& y)
{ return cl_I(x) + y; }
inline const cl_I operator+ (const long x, const cl_I& y)
{ return cl_I(x) + y; }
inline const cl_I operator+ (const unsigned long x, const cl_I& y)
{ return cl_I(x) + y; }
#ifdef HAVE_LONGLONG
inline const cl_I operator+ (const long long x, const cl_I& y)
{ return cl_I(x) + y; }
inline const cl_I operator+ (const unsigned long long x, const cl_I& y)
{ return cl_I(x) + y; }
#endif
inline const cl_I operator+ (const cl_I& x, const int y)
{ return x + cl_I(y); }
inline const cl_I operator+ (const cl_I& x, const unsigned int y)
{ return x + cl_I(y); }
inline const cl_I operator+ (const cl_I& x, const long y)
{ return x + cl_I(y); }
inline const cl_I operator+ (const cl_I& x, const unsigned long y)
{ return x + cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_I operator+ (const cl_I& x, const long long y)
{ return x + cl_I(y); }
inline const cl_I operator+ (const cl_I& x, const unsigned long long y)
{ return x + cl_I(y); }
#endif
// (- x), wenn x ein Integer ist. Ergebnis Integer.
extern const cl_I operator- (const cl_I& x);
// (- x y), wo x und y Integers sind. Ergebnis Integer.
extern const cl_I operator- (const cl_I& x, const cl_I& y);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_I operator- (const int x, const cl_I& y)
{ return cl_I(x) - y; }
inline const cl_I operator- (const unsigned int x, const cl_I& y)
{ return cl_I(x) - y; }
inline const cl_I operator- (const long x, const cl_I& y)
{ return cl_I(x) - y; }
inline const cl_I operator- (const unsigned long x, const cl_I& y)
{ return cl_I(x) - y; }
#ifdef HAVE_LONGLONG
inline const cl_I operator- (const long long x, const cl_I& y)
{ return cl_I(x) - y; }
inline const cl_I operator- (const unsigned long long x, const cl_I& y)
{ return cl_I(x) - y; }
#endif
inline const cl_I operator- (const cl_I& x, const int y)
{ return x - cl_I(y); }
inline const cl_I operator- (const cl_I& x, const unsigned int y)
{ return x - cl_I(y); }
inline const cl_I operator- (const cl_I& x, const long y)
{ return x - cl_I(y); }
inline const cl_I operator- (const cl_I& x, const unsigned long y)
{ return x - cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_I operator- (const cl_I& x, const long long y)
{ return x - cl_I(y); }
inline const cl_I operator- (const cl_I& x, const unsigned long long y)
{ return x - cl_I(y); }
#endif
// (abs x), wenn x ein Integer ist. Ergebnis Integer.
extern const cl_I abs (const cl_I& x);
// Shifts.
inline const cl_I operator<< (const cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1)
{ return ash(x,y); }
inline const cl_I operator<< (const cl_I& x, const cl_I& y) // assume y >= 0
{ return ash(x,y); }
inline const cl_I operator>> (const cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1)
{ return ash(x,-y); }
inline const cl_I operator>> (const cl_I& x, const cl_I& y) // assume y >= 0
{ return ash(x,-y); }
// Vergleich von Integers
// equal(x,y) vergleicht zwei Integers x und y auf Gleichheit.
extern cl_boolean equal (const cl_I& x, const cl_I& y);
// equal_hashcode(x) liefert einen equal-invarianten Hashcode für x.
extern uint32 equal_hashcode (const cl_I& x);
// compare(x,y) vergleicht zwei Integers x und y.
// Ergebnis: 0 falls x=y, +1 falls x>y, -1 falls x<y.
extern cl_signean compare (const cl_I& x, const cl_I& y);
inline bool operator== (const cl_I& x, const cl_I& y)
{ return equal(x,y); }
inline bool operator!= (const cl_I& x, const cl_I& y)
{ return !equal(x,y); }
inline bool operator<= (const cl_I& x, const cl_I& y)
{ return compare(x,y)<=0; }
inline bool operator< (const cl_I& x, const cl_I& y)
{ return compare(x,y)<0; }
inline bool operator>= (const cl_I& x, const cl_I& y)
{ return compare(x,y)>=0; }
inline bool operator> (const cl_I& x, const cl_I& y)
{ return compare(x,y)>0; }
// minusp(x) == (< x 0)
extern cl_boolean minusp (const cl_I& x);
// plusp(x) == (> x 0)
extern cl_boolean plusp (const cl_I& x);
// zerop(x) stellt fest, ob ein Integer = 0 ist.
extern cl_boolean zerop (const cl_I& x);
// BYTE-Operationen auf Integers
struct cl_byte {
uintC size;
uintC position;
// Konstruktor:
cl_byte (uintC s, uintC p) : size (s), position (p) {}
};
// (LDB byte n), wo n ein Integer ist.
extern const cl_I ldb (const cl_I& n, const cl_byte& b);
// ldb_test(n,byte) führt (LDB-TEST byte n) aus, wobei n ein Integer ist.
// Ergebnis: cl_false wenn nein (also alle fraglichen Bits =0), cl_true wenn ja.
extern cl_boolean ldb_test (const cl_I& n, const cl_byte& b);
// (MASK-FIELD byte n), wo n ein Integer ist.
extern const cl_I mask_field (const cl_I& n, const cl_byte& b);
// (DEPOSIT-FIELD newbyte byte n), wo n und newbyte Integers sind.
extern const cl_I deposit_field (const cl_I& newbyte, const cl_I& n, const cl_byte& b);
// (DPB newbyte byte n), wo n und newbyte Integers sind.
extern const cl_I dpb (const cl_I& newbyte, const cl_I& n, const cl_byte& b);
// Multiplikation ganzer Zahlen
// (* x y), wo x und y Integers sind. Ergebnis Integer.
extern const cl_I operator* (const cl_I& x, const cl_I& y);
// Dem C++-Compiler muß man auch das Folgende sagen:
inline const cl_I operator* (const int x, const cl_I& y)
{ return cl_I(x) * y; }
inline const cl_I operator* (const unsigned int x, const cl_I& y)
{ return cl_I(x) * y; }
inline const cl_I operator* (const long x, const cl_I& y)
{ return cl_I(x) * y; }
inline const cl_I operator* (const unsigned long x, const cl_I& y)
{ return cl_I(x) * y; }
#ifdef HAVE_LONGLONG
inline const cl_I operator* (const long long x, const cl_I& y)
{ return cl_I(x) * y; }
inline const cl_I operator* (const unsigned long long x, const cl_I& y)
{ return cl_I(x) * y; }
#endif
inline const cl_I operator* (const cl_I& x, const int y)
{ return x * cl_I(y); }
inline const cl_I operator* (const cl_I& x, const unsigned int y)
{ return x * cl_I(y); }
inline const cl_I operator* (const cl_I& x, const long y)
{ return x * cl_I(y); }
inline const cl_I operator* (const cl_I& x, const unsigned long y)
{ return x * cl_I(y); }
#ifdef HAVE_LONGLONG
inline const cl_I operator* (const cl_I& x, const long long y)
{ return x * cl_I(y); }
inline const cl_I operator* (const cl_I& x, const unsigned long long y)
{ return x * cl_I(y); }
#endif
// (EXPT x 2), wo x Integer ist.
extern const cl_I square (const cl_I& x);
// (EXPT x y), wo x Integer, y Integer >0 ist.
extern const cl_I expt_pos (const cl_I& x, uintL y);
extern const cl_I expt_pos (const cl_I& x, const cl_I& y);
// Fakultät (! n), wo n Fixnum >=0 ist. Ergebnis Integer.
extern const cl_I factorial (uintL n);
//CL_REQUIRE(cl_I_factorial)
// Double factorial (!! n), with n Fixnum >=0. Returns integer.
extern const cl_I doublefactorial (uintL n);
// Binomialkoeffizient (n \choose k) = n! / k! (n-k)!, wo n,k >= 0 sind.
extern const cl_I binomial (uintL n, uintL k);
// Division ganzer Zahlen
// Return type for division operators.
// x / y --> (q,r) with x = y*q+r.
struct cl_I_div_t {
cl_I quotient;
cl_I remainder;
// Constructor.
cl_I_div_t () {}
cl_I_div_t (const cl_I& q, const cl_I& r) : quotient(q), remainder(r) {}
};
// Dividiert zwei Integers x,y >=0 und liefert den Quotienten x/y >=0.
// Bei y=0 Error. Die Division muß aufgehen, sonst Error.
// exquopos(x,y)
// > x,y: Integers >=0
// < ergebnis: Quotient x/y, ein Integer >=0
extern const cl_I exquopos (const cl_I& x, const cl_I& y);
// Dividiert zwei Integers x,y und liefert den Quotienten x/y.
// Bei y=0 Error. Die Division muß aufgehen, sonst Error.
// exquo(x,y)
// > x,y: Integers
// < ergebnis: Quotient x/y, ein Integer
extern const cl_I exquo (const cl_I& x, const cl_I& y);
// mod(x,y) = (mod x y), wo x,y Integers sind.
extern const cl_I mod (const cl_I& x, const cl_I& y);
// rem(x,y) = (rem x y), wo x,y Integers sind.
extern const cl_I rem (const cl_I& x, const cl_I& y);
// Dividiert zwei Integers x,y und liefert Quotient und Rest
// (q,r) := (floor x y)
// floor2(x,y)
// > x,y: Integers
// < q,r: Quotient q, Rest r
extern const cl_I_div_t floor2 (const cl_I& x, const cl_I& y);
extern const cl_I floor1 (const cl_I& x, const cl_I& y);
// Dividiert zwei Integers x,y und liefert Quotient und Rest
// (q,r) := (ceiling x y)
// ceiling2(x,y)
// > x,y: Integers
// < q,r: Quotient q, Rest r
extern const cl_I_div_t ceiling2 (const cl_I& x, const cl_I& y);
extern const cl_I ceiling1 (const cl_I& x, const cl_I& y);
// Dividiert zwei Integers x,y und liefert Quotient und Rest
// (q,r) := (truncate x y)
// truncate2(x,y)
// > x,y: Integers
// < q,r: Quotient q, Rest r
extern const cl_I_div_t truncate2 (const cl_I& x, const cl_I& y);
extern const cl_I truncate1 (const cl_I& x, const cl_I& y);
// Dividiert zwei Integers x,y und liefert Quotient und Rest
// (q,r) := (round x y)
// round2(x,y)
// > x,y: Integers
// < q,r: Quotient q, Rest r
extern const cl_I_div_t round2 (const cl_I& x, const cl_I& y);
extern const cl_I round1 (const cl_I& x, const cl_I& y);
// ggT und kgV von Integers
// Liefert den ggT zweier Integers.
// gcd(a,b)
// > a,b: zwei Integers
// < ergebnis: (gcd a b), ein Integer >=0
extern const cl_I gcd (const cl_I& a, const cl_I& b);
extern uintV gcd (uintV a, uintV b);
// Liefert den ggT zweier Integers samt Beifaktoren.
// g = xgcd(a,b,&u,&v)
// > a,b: zwei Integers
// < u, v, g: Integers mit u*a+v*b = g >= 0
extern const cl_I xgcd (const cl_I& a, const cl_I& b, cl_I* u, cl_I* v);
// Im Fall A/=0, B/=0 genügt das Ergebnis (g,u,v) den Ungleichungen:
// Falls |A| = |B| : g = |A|, u = (signum A), v = 0.
// Falls |B| | |A|, |B| < |A| : g = |B|, u = 0, v = (signum B).
// Falls |A| | |B|, |A| < |B| : g = |A|, u = (signum A), v = 0.
// Sonst: |u| <= |B| / (2*g), |v| <= |A| / (2*g).
// In jedem Fall |u| <= |B|/g, |v| < |A|/g.
// (Beweis: Im Prinzip macht man ja mehrere Euklid-Schritte auf einmal. Im
// letzten Fall - oBdA |A| > |B| - braucht man mindestens zwei Euklid-Schritte,
// also gilt im Euklid-Tableau
// i |A| |B| Erg.
// --------------------------------------------
// 0 1 0 |A|
// 1 0 1 |B|
// ... ... ... ...
// n-1 -(-1)^n*x[n-1] (-1)^n*y[n-1] z[n-1]
// n (-1)^n*x[n] -(-1)^n*y[n] z[n]
// n+1 -(-1)^n*x[n+1] (-1)^n*y[n+1] z[n+1] = 0
// --------------------------------------------
// g = z[n], |u|=x[n], |v|=y[n]
// n>=2, z[0] > ... > z[n-1] > z[n] = g, g | z[n-1], also z[n-1] >= 2*g.
// Da aber mit (-1)^i*x[i]*|A| - (-1)^i*y[i]*|B| = z[i] für i=0..n+1
// und x[i]*y[i+1] - x[i+1]*y[i] = (-1)^i für i=0..n,
// x[i]*z[i+1] - x[i+1]*z[i] = (-1)^i*|B| für i=0..n,
// y[i]*z[i+1] - y[i+1]*z[i] = -(-1)^i*|A| für i=0..n
// auch |A| = y[i+1]*z[i] + y[i]*z[i+1], |B| = x[i+1]*z[i] + x[i]*z[i+1]
// für i=0..n (Cramersche Regel), folgt
// |A| = y[n]*z[n-1] + y[n-1]*z[n] >= y[n]*2*g + 0 = |v|*2*g,
// |B| = x[n]*z[n-1] + x[n-1]*z[n] >= x[n]*2*g + 0 = |u|*2*g.)
// Liefert den kgV zweier Integers.
// lcm(a,b)
// > a,b: zwei Integers
// < ergebnis: (lcm a b), ein Integer >=0
extern const cl_I lcm (const cl_I& a, const cl_I& b);
// Wurzel aus ganzen Zahlen
// Zieht die Wurzel (ISQRT x) aus einem Integer.
// isqrt(x,&w)
// > x: Integer (sollte >=0 sein)
// < w: (isqrt x)
// < ergebnis: cl_true falls x Quadratzahl, cl_false sonst
extern cl_boolean isqrt (const cl_I& x, cl_I* w);
// Wenn das boolesche Ergebnis uninteressant ist:
inline const cl_I isqrt (const cl_I& x) { cl_I w; isqrt(x,&w); return w; }
// Stellt fest, ob ein Integer >=0 eine Quadratzahl ist.
// sqrtp(x,&w)
// > x: ein Integer >=0
// < w: Integer (sqrt x) falls x Quadratzahl
// < ergebnis: cl_true ..................., cl_false sonst
extern cl_boolean sqrtp (const cl_I& x, cl_I* w);
// Stellt fest, ob ein Integer >=0 eine n-te Potenz ist.
// rootp(x,n,&w)
// > x: ein Integer >=0
// > n: ein Integer >0
// < w: Integer (expt x (/ n)) falls x eine n-te Potenz
// < ergebnis: cl_true ........................, cl_false sonst
extern cl_boolean rootp (const cl_I& x, uintL n, cl_I* w);
extern cl_boolean rootp (const cl_I& x, const cl_I& n, cl_I* w);
// max(x,y) liefert (max x y), wo x und y ganze Zahlen sind.
extern const cl_I max (const cl_I& x, const cl_I& y);
// min(x,y) liefert (min x y), wo x und y ganze Zahlen sind.
extern const cl_I min (const cl_I& x, const cl_I& y);
// signum(x) liefert (signum x), wo x eine ganze Zahl ist.
extern const cl_I signum (const cl_I& x);
// Multipliziert ein Integer mit 10 und addiert eine weitere Ziffer.
// mul_10_plus_x(y,x)
// > y: Integer Y (>=0)
// > x: Ziffernwert X (>=0,<10)
// < ergebnis: Integer Y*10+X (>=0)
extern const cl_I mul_10_plus_x (const cl_I& y, unsigned char x);
// 2-adische Inverse.
// cl_recip2adic(n,x)
// > n: >0
// > x: Integer, ungerade
// < ergebnis: n-Bit-Zahl y == (x mod 2^n)^-1, d.h. y*x == 1 mod 2^n
extern const cl_I cl_recip2adic (uintL n, const cl_I& x);
// 2-adische Division.
// cl_div2adic(n,x,y)
// > n: >0
// > x: Integer
// > y: Integer, ungerade
// < ergebnis: n-Bit-Zahl z == (x mod 2^n)/(y mod 2^n), d.h. z*y == x mod 2^n
extern const cl_I cl_div2adic (uintL n, const cl_I& x, const cl_I& y);
// numerator(r) liefert den Zähler des Integer r.
inline const cl_I numerator (const cl_I& r)
{ return r; }
// denominator(r) liefert den Nenner (> 0) des Integer r.
inline const cl_I denominator (const cl_I& r)
{ (void)r; return 1; }
// Konversion zu einem C "float".
extern float float_approx (const cl_I& x);
// Konversion zu einem C "double".
extern double double_approx (const cl_I& x);
// random_I(randomstate,n) liefert zu einem Integer n>0 ein zufälliges
// Integer x mit 0 <= x < n.
// > randomstate: ein Random-State, wird verändert
extern const cl_I random_I (random_state& randomstate, const cl_I& n);
inline const cl_I random_I (const cl_I& n)
{ return random_I(default_random_state,n); }
// testrandom_I(randomstate) liefert ein zufälliges Integer zum Testen.
// > randomstate: ein Random-State, wird verändert
extern const cl_I testrandom_I (random_state& randomstate);
inline const cl_I testrandom_I ()
{ return testrandom_I(default_random_state); }
#ifdef WANT_OBFUSCATING_OPERATORS
// This could be optimized to use in-place operations.
inline cl_I& operator+= (cl_I& x, const cl_I& y) { return x = x + y; }
inline cl_I& operator+= (cl_I& x, const int y) { return x = x + y; }
inline cl_I& operator+= (cl_I& x, const unsigned int y) { return x = x + y; }
inline cl_I& operator+= (cl_I& x, const long y) { return x = x + y; }
inline cl_I& operator+= (cl_I& x, const unsigned long y) { return x = x + y; }
inline cl_I& operator++ /* prefix */ (cl_I& x) { return x = plus1(x); }
inline void operator++ /* postfix */ (cl_I& x, int dummy) { (void)dummy; x = plus1(x); }
inline cl_I& operator-= (cl_I& x, const cl_I& y) { return x = x - y; }
inline cl_I& operator-= (cl_I& x, const int y) { return x = x - y; }
inline cl_I& operator-= (cl_I& x, const unsigned int y) { return x = x - y; }
inline cl_I& operator-= (cl_I& x, const long y) { return x = x - y; }
inline cl_I& operator-= (cl_I& x, const unsigned long y) { return x = x - y; }
inline cl_I& operator-- /* prefix */ (cl_I& x) { return x = minus1(x); }
inline void operator-- /* postfix */ (cl_I& x, int dummy) { (void)dummy; x = minus1(x); }
inline cl_I& operator*= (cl_I& x, const cl_I& y) { return x = x * y; }
inline cl_I& operator<<= (cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1)
{ return x = x << y; }
inline cl_I& operator<<= (cl_I& x, const cl_I& y) // assume y >= 0
{ return x = x << y; }
inline cl_I& operator>>= (cl_I& x, sintC y) // assume 0 <= y < 2^(intCsize-1)
{ return x = x >> y; }
inline cl_I& operator>>= (cl_I& x, const cl_I& y) // assume y >= 0
{ return x = x >> y; }
#if 0 // Defining operator/ collides with the operator/ (cl_RA, cl_RA).
// operator/ should perform exquo(x,y), but people believe in the C semantics.
// And it would be wiser to use floor1 and mod instead of truncate1 and rem,
// but again, many C compilers implement / and % like this and people believe
// in it.
inline const cl_I operator/ (const cl_I& x, const cl_I& y) { return truncate1(x,y); }
inline const cl_I operator% (const cl_I& x, const cl_I& y) { return rem(x,y); }
inline cl_I& operator/= (cl_I& x, const cl_I& y) { return x = x / y; }
inline cl_I& operator%= (cl_I& x, const cl_I& y) { return x = x % y; }
#endif
#endif
// Runtime typing support.
extern cl_class cl_class_fixnum;
extern cl_class cl_class_bignum;
CL_FORCE_LINK(cl_I_classes_dummy, cl_class_fixnum)
// Debugging support.
#ifdef CL_DEBUG
extern int cl_I_debug_module;
CL_FORCE_LINK(cl_I_debug_dummy, cl_I_debug_module)
#endif
} // namespace cln
#endif /* _CL_INTEGER_H */