171 lines
4.1 KiB

// Compute and print the n-th Fibonacci number.
// We work with integers and real numbers.
#include <cln/integer.h>
#include <cln/real.h>
// We do I/O.
#include <cln/io.h>
#include <cln/integer_io.h>
// We use the timing functions.
#include <cln/timing.h>
using namespace std;
using namespace cln;
// F_n is defined through the recurrence relation
// F_0 = 0, F_1 = 1, F_(n+2) = F_(n+1) + F_n.
// The following addition formula holds:
// F_(n+m) = F_(m-1) * F_n + F_m * F_(n+1) for m >= 1, n >= 0.
// (Proof: For fixed m, the LHS and the RHS satisfy the same recurrence
// w.r.t. n, and the initial values (n=0, n=1) agree. Hence all values agree.)
// Replace m by m+1:
// F_(n+m+1) = F_m * F_n + F_(m+1) * F_(n+1) for m >= 0, n >= 0
// Now put in m = n, to get
// F_(2n) = (F_(n+1)-F_n) * F_n + F_n * F_(n+1) = F_n * (2*F_(n+1) - F_n)
// F_(2n+1) = F_n ^ 2 + F_(n+1) ^ 2
// hence
// F_(2n+2) = F_(n+1) * (2*F_n + F_(n+1))
struct twofibs {
cl_I u; // F_n
cl_I v; // F_(n+1)
// Constructor.
twofibs (const cl_I& uu, const cl_I& vv) : u (uu), v (vv) {}
};
// Returns F_n and F_(n+1). Assume n>=0.
static const twofibs fibonacci2 (int n)
{
if (n==0)
return twofibs(0,1);
int m = n/2; // floor(n/2)
twofibs Fm = fibonacci2(m);
// Since a squaring is cheaper than a multiplication, better use
// three squarings instead of one multiplication and two squarings.
cl_I u2 = square(Fm.u);
cl_I v2 = square(Fm.v);
if (n==2*m) {
// n = 2*m
cl_I uv2 = square(Fm.v - Fm.u);
return twofibs(v2 - uv2, u2 + v2);
} else {
// n = 2*m+1
cl_I uv2 = square(Fm.u + Fm.v);
return twofibs(u2 + v2, uv2 - u2);
}
}
// Returns just F_n. Assume n>=0.
const cl_I fibonacci (int n)
{
if (n==0)
return 0;
int m = n/2; // floor(n/2)
twofibs Fm = fibonacci2(m);
if (n==2*m) {
// n = 2*m
// Here we don't use the squaring formula because
// one multiplication is cheaper than two squarings.
cl_I& u = Fm.u;
cl_I& v = Fm.v;
return u * ((v << 1) - u);
} else {
// n = 2*m+1
cl_I u2 = square(Fm.u);
cl_I v2 = square(Fm.v);
return u2 + v2;
}
}
// The next routine is a variation of the above. It is mathematically
// equivalent but implemented in a non-recursive way.
const cl_I fibonacci_compact (int n)
{
if (n==0)
return 0;
cl_I u = 0;
cl_I v = 1;
cl_I m = n/2; // floor(n/2)
for (uintC bit=integer_length(m); bit>0; --bit) {
// Since a squaring is cheaper than a multiplication, better use
// three squarings instead of one multiplication and two squarings.
cl_I u2 = square(u);
cl_I v2 = square(v);
if (logbitp(bit-1, m)) {
v = square(u + v) - u2;
u = u2 + v2;
} else {
u = v2 - square(v - u);
v = u2 + v2;
}
}
if (n==2*m)
// Here we don't use the squaring formula because
// one multiplication is cheaper than two squarings.
return u * ((v << 1) - u);
else
return square(u) + square(v);
}
// Returns just F_n, computed as the nearest integer to
// ((1+sqrt(5))/2)^n/sqrt(5). Assume n>=0.
const cl_I fibonacci_slow (int n)
{
// Need a precision of ((1+sqrt(5))/2)^-n.
float_format_t prec = float_format((int)(0.208987641*n+5));
cl_R sqrt5 = sqrt(cl_float(5,prec));
cl_R phi = (1+sqrt5)/2;
return round1( expt(phi,n)/sqrt5 );
}
#ifndef TIMING
int main (int argc, char* argv[])
{
if (argc != 2) {
cerr << "Usage: fibonacci n" << endl;
return(1);
}
int n = atoi(argv[1]);
cout << "fib(" << n << ") = " << fibonacci(n) << endl;
return(0);
}
#else // TIMING
int main (int argc, char* argv[])
{
int repetitions = 100;
if ((argc >= 3) && !strcmp(argv[1],"-r")) {
repetitions = atoi(argv[2]);
argc -= 2; argv += 2;
}
if (argc != 2) {
cerr << "Usage: fibonacci n" << endl;
return(1);
}
int n = atoi(argv[1]);
{ CL_TIMING;
cout << "fib(" << n << ") = ";
for (int rep = repetitions-1; rep > 0; rep--)
fibonacci(n);
cout << fibonacci(n) << endl;
}
{ CL_TIMING;
cout << "fib(" << n << ") = ";
for (int rep = repetitions-1; rep > 0; rep--)
fibonacci_compact(n);
cout << fibonacci_compact(n) << endl;
}
{ CL_TIMING;
cout << "fib(" << n << ") = ";
for (int rep = repetitions-1; rep > 0; rep--)
fibonacci_slow(n);
cout << fibonacci_slow(n) << endl;
}
return(0);
}
#endif