464 lines
16 KiB
464 lines
16 KiB
// Ring operations.
|
|
|
|
#ifndef _CL_RING_H
|
|
#define _CL_RING_H
|
|
|
|
#include "cln/object.h"
|
|
#include "cln/malloc.h"
|
|
#include "cln/proplist.h"
|
|
#include "cln/number.h"
|
|
#include "cln/exception.h"
|
|
#include "cln/io.h"
|
|
|
|
namespace cln {
|
|
|
|
class cl_I;
|
|
|
|
// This file defines the general layout of rings, ring elements, and
|
|
// operations available on ring elements. Any subclass of `cl_ring'
|
|
// must implement these operations, with the same memory layout.
|
|
// (Because generic packages like the polynomial rings access the base
|
|
// ring's operation vectors through inline functions defined in this file.)
|
|
|
|
class cl_heap_ring;
|
|
|
|
// Rings are reference counted, but not freed immediately when they aren't
|
|
// used any more. Hence they inherit from `cl_rcpointer'.
|
|
|
|
// Vectors of function pointers are more efficient than virtual member
|
|
// functions. But it constrains us not to use multiple or virtual inheritance.
|
|
//
|
|
// Note! We are passing raw `cl_heap_ring*' pointers to the operations
|
|
// for efficiency (compared to passing `const cl_ring&', we save a memory
|
|
// access, and it is easier to cast to a `cl_heap_ring_specialized*').
|
|
// These raw pointers are meant to be used downward (in the dynamic extent
|
|
// of the call) only. If you need to save them in a data structure, cast
|
|
// to `cl_ring'; this will correctly increment the reference count.
|
|
// (This technique is safe because the inline wrapper functions make sure
|
|
// that we have a `cl_ring' somewhere containing the pointer, so there
|
|
// is no danger of dangling pointers.)
|
|
//
|
|
// Note! Because the `cl_heap_ring*' -> `cl_ring' conversion increments
|
|
// the reference count, you have to use the `cl_private_thing' -> `cl_ring'
|
|
// conversion if the reference count is already incremented.
|
|
|
|
class cl_ring : public cl_rcpointer {
|
|
public:
|
|
// Constructor. Takes a cl_heap_ring*, increments its refcount.
|
|
cl_ring (cl_heap_ring* r);
|
|
// Private constructor. Doesn't increment the refcount.
|
|
cl_ring (cl_private_thing);
|
|
// Copy constructor.
|
|
cl_ring (const cl_ring&);
|
|
// Assignment operator.
|
|
cl_ring& operator= (const cl_ring&);
|
|
// Default constructor.
|
|
cl_ring ();
|
|
// Automatic dereferencing.
|
|
cl_heap_ring* operator-> () const
|
|
{ return (cl_heap_ring*)heappointer; }
|
|
};
|
|
CL_DEFINE_COPY_CONSTRUCTOR2(cl_ring,cl_rcpointer)
|
|
CL_DEFINE_ASSIGNMENT_OPERATOR(cl_ring,cl_ring)
|
|
|
|
// Normal constructor for `cl_ring'.
|
|
inline cl_ring::cl_ring (cl_heap_ring* r)
|
|
{ cl_inc_pointer_refcount((cl_heap*)r); pointer = r; }
|
|
// Private constructor for `cl_ring'.
|
|
inline cl_ring::cl_ring (cl_private_thing p)
|
|
{ pointer = p; }
|
|
|
|
inline bool operator== (const cl_ring& R1, const cl_ring& R2)
|
|
{ return (R1.pointer == R2.pointer); }
|
|
inline bool operator!= (const cl_ring& R1, const cl_ring& R2)
|
|
{ return (R1.pointer != R2.pointer); }
|
|
inline bool operator== (const cl_ring& R1, cl_heap_ring* R2)
|
|
{ return (R1.pointer == R2); }
|
|
inline bool operator!= (const cl_ring& R1, cl_heap_ring* R2)
|
|
{ return (R1.pointer != R2); }
|
|
|
|
// Representation of an element of a ring.
|
|
//
|
|
// In order to support true polymorphism (without C++ templates), all
|
|
// ring elements share the same basic layout:
|
|
// cl_ring ring; // the ring
|
|
// cl_gcobject rep; // representation of the element
|
|
// The representation of the element depends on the ring, of course,
|
|
// but we constrain it to be a single pointer into the heap or an immediate
|
|
// value.
|
|
//
|
|
// Any arithmetic operation on a ring R (like +, -, *) must return a value
|
|
// with ring = R. This is
|
|
// a. necessary if the computation is to proceed correctly (e.g. in cl_RA,
|
|
// ((3/4)*4 mod 3) is 0, simplifying it to ((cl_I)4 mod (cl_I)3) = 1
|
|
// wouldn't be correct),
|
|
// b. possible even if R is an extension ring of some ring R1 (e.g. cl_N
|
|
// being an extension ring of cl_R). Automatic retraction from R to R1
|
|
// can be done through dynamic typing: An element of R which happens
|
|
// to lie in R1 is stored using the internal representation of R1,
|
|
// but with ring = R. Elements of R1 and R\R1 can be distinguished
|
|
// through rep's type.
|
|
// c. an advantage for the implementation of polynomials and other
|
|
// entities which contain many elements of the same ring. They need
|
|
// to store only the elements' representations, and a single pointer
|
|
// to the ring.
|
|
//
|
|
// The ring operations exist in two versions:
|
|
// - Low-level version, which only operates on the representation.
|
|
// - High-level version, which operates on full cl_ring_elements.
|
|
// We make this distinction for performance: Multiplication of polynomials
|
|
// over Z/nZ, operating on the high-level operations, spends 40% of its
|
|
// computing time with packing and unpacking of cl_ring_elements.
|
|
// The low-level versions have an underscore prepended and are unsafe.
|
|
|
|
class _cl_ring_element {
|
|
public:
|
|
cl_gcobject rep; // representation of the element
|
|
// Default constructor.
|
|
_cl_ring_element ();
|
|
public: /* ugh */
|
|
// Constructor.
|
|
_cl_ring_element (const cl_heap_ring* R, const cl_gcobject& r) : rep (as_cl_private_thing(r)) { (void)R; }
|
|
_cl_ring_element (const cl_ring& R, const cl_gcobject& r) : rep (as_cl_private_thing(r)) { (void)R; }
|
|
public: // Ability to place an object at a given address.
|
|
void* operator new (size_t size) { return malloc_hook(size); }
|
|
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
|
|
void operator delete (void* ptr) { free_hook(ptr); }
|
|
};
|
|
|
|
class cl_ring_element : public _cl_ring_element {
|
|
protected:
|
|
cl_ring _ring; // ring
|
|
public:
|
|
const cl_ring& ring () const { return _ring; }
|
|
// Default constructor.
|
|
cl_ring_element ();
|
|
public: /* ugh */
|
|
// Constructor.
|
|
cl_ring_element (const cl_ring& R, const cl_gcobject& r) : _cl_ring_element (R,r), _ring (R) {}
|
|
cl_ring_element (const cl_ring& R, const _cl_ring_element& r) : _cl_ring_element (r), _ring (R) {}
|
|
public: // Debugging output.
|
|
void debug_print () const;
|
|
// Ability to place an object at a given address.
|
|
void* operator new (size_t size) { return malloc_hook(size); }
|
|
void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
|
|
void operator delete (void* ptr) { free_hook(ptr); }
|
|
};
|
|
|
|
// The ring operations are encoded as vectors of function pointers. You
|
|
// can add more operations to the end of each vector or add new vectors,
|
|
// but you must not reorder the operations nor reorder the vectors nor
|
|
// change the functions' signatures incompatibly.
|
|
|
|
// There should ideally be a template class for each vector, but unfortunately
|
|
// you lose the ability to initialize the vector using "= { ... }" syntax
|
|
// when you subclass it.
|
|
|
|
struct _cl_ring_setops {
|
|
// print
|
|
void (* fprint) (cl_heap_ring* R, std::ostream& stream, const _cl_ring_element& x);
|
|
// equality
|
|
bool (* equal) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
|
|
// ...
|
|
};
|
|
struct _cl_ring_addops {
|
|
// 0
|
|
const _cl_ring_element (* zero) (cl_heap_ring* R);
|
|
bool (* zerop) (cl_heap_ring* R, const _cl_ring_element& x);
|
|
// x+y
|
|
const _cl_ring_element (* plus) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
|
|
// x-y
|
|
const _cl_ring_element (* minus) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
|
|
// -x
|
|
const _cl_ring_element (* uminus) (cl_heap_ring* R, const _cl_ring_element& x);
|
|
// ...
|
|
};
|
|
struct _cl_ring_mulops {
|
|
// 1
|
|
const _cl_ring_element (* one) (cl_heap_ring* R);
|
|
// canonical homomorphism
|
|
const _cl_ring_element (* canonhom) (cl_heap_ring* R, const cl_I& x);
|
|
// x*y
|
|
const _cl_ring_element (* mul) (cl_heap_ring* R, const _cl_ring_element& x, const _cl_ring_element& y);
|
|
// x^2
|
|
const _cl_ring_element (* square) (cl_heap_ring* R, const _cl_ring_element& x);
|
|
// x^y, y Integer >0
|
|
const _cl_ring_element (* expt_pos) (cl_heap_ring* R, const _cl_ring_element& x, const cl_I& y);
|
|
// ...
|
|
};
|
|
typedef const _cl_ring_setops cl_ring_setops;
|
|
typedef const _cl_ring_addops cl_ring_addops;
|
|
typedef const _cl_ring_mulops cl_ring_mulops;
|
|
|
|
// Representation of a ring in memory.
|
|
|
|
class cl_heap_ring : public cl_heap {
|
|
public:
|
|
// Allocation.
|
|
void* operator new (size_t size) { return malloc_hook(size); }
|
|
// Deallocation.
|
|
void operator delete (void* ptr) { free_hook(ptr); }
|
|
private:
|
|
cl_property_list properties;
|
|
protected:
|
|
cl_ring_setops* setops;
|
|
cl_ring_addops* addops;
|
|
cl_ring_mulops* mulops;
|
|
public:
|
|
// More information comes here.
|
|
// ...
|
|
public:
|
|
// Low-level operations.
|
|
void _fprint (std::ostream& stream, const _cl_ring_element& x)
|
|
{ setops->fprint(this,stream,x); }
|
|
bool _equal (const _cl_ring_element& x, const _cl_ring_element& y)
|
|
{ return setops->equal(this,x,y); }
|
|
const _cl_ring_element _zero ()
|
|
{ return addops->zero(this); }
|
|
bool _zerop (const _cl_ring_element& x)
|
|
{ return addops->zerop(this,x); }
|
|
const _cl_ring_element _plus (const _cl_ring_element& x, const _cl_ring_element& y)
|
|
{ return addops->plus(this,x,y); }
|
|
const _cl_ring_element _minus (const _cl_ring_element& x, const _cl_ring_element& y)
|
|
{ return addops->minus(this,x,y); }
|
|
const _cl_ring_element _uminus (const _cl_ring_element& x)
|
|
{ return addops->uminus(this,x); }
|
|
const _cl_ring_element _one ()
|
|
{ return mulops->one(this); }
|
|
const _cl_ring_element _canonhom (const cl_I& x)
|
|
{ return mulops->canonhom(this,x); }
|
|
const _cl_ring_element _mul (const _cl_ring_element& x, const _cl_ring_element& y)
|
|
{ return mulops->mul(this,x,y); }
|
|
const _cl_ring_element _square (const _cl_ring_element& x)
|
|
{ return mulops->square(this,x); }
|
|
const _cl_ring_element _expt_pos (const _cl_ring_element& x, const cl_I& y)
|
|
{ return mulops->expt_pos(this,x,y); }
|
|
// High-level operations.
|
|
void fprint (std::ostream& stream, const cl_ring_element& x)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
_fprint(stream,x);
|
|
}
|
|
bool equal (const cl_ring_element& x, const cl_ring_element& y)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
if (!(y.ring() == this)) throw runtime_exception();
|
|
return _equal(x,y);
|
|
}
|
|
const cl_ring_element zero ()
|
|
{
|
|
return cl_ring_element(this,_zero());
|
|
}
|
|
bool zerop (const cl_ring_element& x)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
return _zerop(x);
|
|
}
|
|
const cl_ring_element plus (const cl_ring_element& x, const cl_ring_element& y)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
if (!(y.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_plus(x,y));
|
|
}
|
|
const cl_ring_element minus (const cl_ring_element& x, const cl_ring_element& y)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
if (!(y.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_minus(x,y));
|
|
}
|
|
const cl_ring_element uminus (const cl_ring_element& x)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_uminus(x));
|
|
}
|
|
const cl_ring_element one ()
|
|
{
|
|
return cl_ring_element(this,_one());
|
|
}
|
|
const cl_ring_element canonhom (const cl_I& x)
|
|
{
|
|
return cl_ring_element(this,_canonhom(x));
|
|
}
|
|
const cl_ring_element mul (const cl_ring_element& x, const cl_ring_element& y)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
if (!(y.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_mul(x,y));
|
|
}
|
|
const cl_ring_element square (const cl_ring_element& x)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_square(x));
|
|
}
|
|
const cl_ring_element expt_pos (const cl_ring_element& x, const cl_I& y)
|
|
{
|
|
if (!(x.ring() == this)) throw runtime_exception();
|
|
return cl_ring_element(this,_expt_pos(x,y));
|
|
}
|
|
// Property operations.
|
|
cl_property* get_property (const cl_symbol& key)
|
|
{ return properties.get_property(key); }
|
|
void add_property (cl_property* new_property)
|
|
{ properties.add_property(new_property); }
|
|
// Constructor.
|
|
cl_heap_ring (cl_ring_setops* setopv, cl_ring_addops* addopv, cl_ring_mulops* mulopv)
|
|
: setops (setopv), addops (addopv), mulops (mulopv)
|
|
{ refcount = 0; } // will be incremented by the `cl_ring' constructor
|
|
};
|
|
#define SUBCLASS_cl_heap_ring() \
|
|
public: \
|
|
/* Allocation. */ \
|
|
void* operator new (size_t size) { return malloc_hook(size); } \
|
|
/* Deallocation. */ \
|
|
void operator delete (void* ptr) { free_hook(ptr); }
|
|
|
|
// Operations on ring elements.
|
|
|
|
// Output.
|
|
inline void fprint (std::ostream& stream, const cl_ring_element& x)
|
|
{ x.ring()->fprint(stream,x); }
|
|
CL_DEFINE_PRINT_OPERATOR(cl_ring_element)
|
|
|
|
// Add.
|
|
inline const cl_ring_element operator+ (const cl_ring_element& x, const cl_ring_element& y)
|
|
{ return x.ring()->plus(x,y); }
|
|
|
|
// Negate.
|
|
inline const cl_ring_element operator- (const cl_ring_element& x)
|
|
{ return x.ring()->uminus(x); }
|
|
|
|
// Subtract.
|
|
inline const cl_ring_element operator- (const cl_ring_element& x, const cl_ring_element& y)
|
|
{ return x.ring()->minus(x,y); }
|
|
|
|
// Equality.
|
|
inline bool operator== (const cl_ring_element& x, const cl_ring_element& y)
|
|
{ return x.ring()->equal(x,y); }
|
|
inline bool operator!= (const cl_ring_element& x, const cl_ring_element& y)
|
|
{ return !x.ring()->equal(x,y); }
|
|
|
|
// Compare against 0.
|
|
inline bool zerop (const cl_ring_element& x)
|
|
{ return x.ring()->zerop(x); }
|
|
|
|
// Multiply.
|
|
inline const cl_ring_element operator* (const cl_ring_element& x, const cl_ring_element& y)
|
|
{ return x.ring()->mul(x,y); }
|
|
|
|
// Squaring.
|
|
inline const cl_ring_element square (const cl_ring_element& x)
|
|
{ return x.ring()->square(x); }
|
|
|
|
// Exponentiation x^y, where y > 0.
|
|
inline const cl_ring_element expt_pos (const cl_ring_element& x, const cl_I& y)
|
|
{ return x.ring()->expt_pos(x,y); }
|
|
|
|
// Scalar multiplication.
|
|
// [Is this operation worth being specially optimized for the case of
|
|
// polynomials?? Polynomials have a faster scalar multiplication.
|
|
// We should use it.??]
|
|
inline const cl_ring_element operator* (const cl_I& x, const cl_ring_element& y)
|
|
{ return y.ring()->mul(y.ring()->canonhom(x),y); }
|
|
inline const cl_ring_element operator* (const cl_ring_element& x, const cl_I& y)
|
|
{ return x.ring()->mul(x.ring()->canonhom(y),x); }
|
|
|
|
|
|
// Ring of uninitialized elements.
|
|
// Any operation results in an exception being thrown.
|
|
|
|
// Thrown when an attempt is made to perform an operation on an uninitialized ring.
|
|
class uninitialized_ring_exception : public runtime_exception {
|
|
public:
|
|
uninitialized_ring_exception ();
|
|
};
|
|
|
|
// Thrown when a ring element is uninitialized.
|
|
class uninitialized_exception : public runtime_exception {
|
|
public:
|
|
explicit uninitialized_exception (const _cl_ring_element& obj);
|
|
uninitialized_exception (const _cl_ring_element& obj_x, const _cl_ring_element& obj_y);
|
|
};
|
|
|
|
extern const cl_ring cl_no_ring;
|
|
extern cl_class cl_class_no_ring;
|
|
|
|
class cl_no_ring_init_helper
|
|
{
|
|
static int count;
|
|
public:
|
|
cl_no_ring_init_helper();
|
|
~cl_no_ring_init_helper();
|
|
};
|
|
static cl_no_ring_init_helper cl_no_ring_init_helper_instance;
|
|
|
|
inline cl_ring::cl_ring ()
|
|
: cl_rcpointer (as_cl_private_thing(cl_no_ring)) {}
|
|
inline _cl_ring_element::_cl_ring_element ()
|
|
: rep ((cl_private_thing) cl_combine(cl_FN_tag,0)) {}
|
|
inline cl_ring_element::cl_ring_element ()
|
|
: _cl_ring_element (), _ring () {}
|
|
|
|
|
|
// Support for built-in number rings.
|
|
// Beware, they are not optimally efficient.
|
|
|
|
template <class T>
|
|
struct cl_number_ring_ops {
|
|
bool (* contains) (const cl_number&);
|
|
bool (* equal) (const T&, const T&);
|
|
bool (* zerop) (const T&);
|
|
const T (* plus) (const T&, const T&);
|
|
const T (* minus) (const T&, const T&);
|
|
const T (* uminus) (const T&);
|
|
const T (* mul) (const T&, const T&);
|
|
const T (* square) (const T&);
|
|
const T (* expt_pos) (const T&, const cl_I&);
|
|
};
|
|
class cl_heap_number_ring : public cl_heap_ring {
|
|
public:
|
|
cl_number_ring_ops<cl_number>* ops;
|
|
// Constructor.
|
|
cl_heap_number_ring (cl_ring_setops* setopv, cl_ring_addops* addopv, cl_ring_mulops* mulopv, cl_number_ring_ops<cl_number>* opv)
|
|
: cl_heap_ring (setopv,addopv,mulopv), ops (opv) {}
|
|
};
|
|
|
|
class cl_number_ring : public cl_ring {
|
|
public:
|
|
cl_number_ring (cl_heap_number_ring* r)
|
|
: cl_ring (r) {}
|
|
};
|
|
|
|
template <class T>
|
|
class cl_specialized_number_ring : public cl_number_ring {
|
|
public:
|
|
cl_specialized_number_ring ();
|
|
};
|
|
|
|
// Type test.
|
|
inline bool instanceof (const cl_number& x, const cl_number_ring& R)
|
|
{
|
|
return ((cl_heap_number_ring*) R.heappointer)->ops->contains(x);
|
|
}
|
|
|
|
|
|
// Hack section.
|
|
|
|
// Conversions to subtypes without checking:
|
|
// The2(cl_MI)(x) converts x to a cl_MI, without change of representation!
|
|
#define The(type) *(const type *) & cl_identity
|
|
#define The2(type) *(const type *) & cl_identity2
|
|
// This inline function is for type checking purposes only.
|
|
inline const cl_ring& cl_identity (const cl_ring& r) { return r; }
|
|
inline const cl_ring_element& cl_identity2 (const cl_ring_element& x) { return x; }
|
|
inline const cl_gcobject& cl_identity (const _cl_ring_element& x) { return x.rep; }
|
|
|
|
|
|
// Debugging support.
|
|
#ifdef CL_DEBUG
|
|
extern int cl_ring_debug_module;
|
|
CL_FORCE_LINK(cl_ring_debug_dummy, cl_ring_debug_module)
|
|
#endif
|
|
|
|
} // namespace cln
|
|
|
|
#endif /* _CL_RING_H */
|