%% This LaTeX-file was created by Sun Feb 16 14:05:43 1997 %% LyX 0.10 (C) 1995 1996 by Matthias Ettrich and the LyX Team %% Don't edit this file unless you are sure what you are doing. \documentclass[12pt,a4paper,oneside,onecolumn]{article} \usepackage[]{fontenc} \usepackage[latin1]{inputenc} \usepackage[dvips]{epsfig} %% %% BEGIN The lyx specific LaTeX commands. %% \makeatletter \def\LyX{L\kern-.1667em\lower.25em\hbox{Y}\kern-.125emX\spacefactor1000}% \newcommand{\lyxtitle}[1] {\thispagestyle{empty} \global\@topnum\z@ \section*{\LARGE \centering \sffamily \bfseries \protect#1 } } \newcommand{\lyxline}[1]{ {#1 \vspace{1ex} \hrule width \columnwidth \vspace{1ex}} } \newenvironment{lyxsectionbibliography} { \section*{\refname} \@mkboth{\uppercase{\refname}}{\uppercase{\refname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \newenvironment{lyxchapterbibliography} { \chapter*{\bibname} \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}} \begin{list}{}{ \itemindent-\leftmargin \labelsep 0pt \renewcommand{\makelabel}{} } } {\end{list}} \def\lxq{"} \newenvironment{lyxcode} {\list{}{ \rightmargin\leftmargin \raggedright \itemsep 0pt \parsep 0pt \ttfamily }% \item[] } {\endlist} \newcommand{\lyxlabel}[1]{#1 \hfill} \newenvironment{lyxlist}[1] {\begin{list}{} {\settowidth{\labelwidth}{#1} \setlength{\leftmargin}{\labelwidth} \addtolength{\leftmargin}{\labelsep} \renewcommand{\makelabel}{\lyxlabel}}} {\end{list}} \newcommand{\lyxletterstyle}{ \setlength\parskip{0.7em} \setlength\parindent{0pt} } \newcommand{\lyxaddress}[1]{ \par {\raggedright #1 \vspace{1.4em} \noindent\par} } \newcommand{\lyxrightaddress}[1]{ \par {\raggedleft \begin{tabular}{l}\ignorespaces #1 \end{tabular} \vspace{1.4em} \par} } \newcommand{\lyxformula}[1]{ \begin{eqnarray*} #1 \end{eqnarray*} } \newcommand{\lyxnumberedformula}[1]{ \begin{eqnarray} #1 \end{eqnarray} } \makeatother %% %% END The lyx specific LaTeX commands. %% \pagestyle{plain} \setcounter{secnumdepth}{3} \setcounter{tocdepth}{3} \begin{document} The Tschebychev polynomials (of the 1st kind) \( T_{n}(x) \) are defined through the recurrence relation \[ T_{0}(x)=1\] \[ T_{1}(x)=x\] \[ T_{n+2}(x)=2x\cdot T_{n+1}(x)-T_{n}(x)\] for \( n\geq 0 \). \begin{description} \item [Theorem:]~ \end{description} \( T_{n}(x) \) satisfies the differential equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \) for all \( n\geq 0 \). \begin{description} \item [Proof:]~ \end{description} Let \( F:=\sum ^{\infty }_{n=0}T_{n}(x)z^{n} \) be the generating function of the sequence of polynomials. The recurrence is equivalent to the equation \[ (1-2x\cdot z+z^{2})\cdot F=1-x\cdot z\] \begin{description} \item [Proof~1:]~ \end{description} \( F \) is a rational function in \( z \), \( F=\frac{1-xz}{1-2xz+z^{2}} \). From the theory of recursions with constant coefficients, we know that we have to perform a partial fraction decomposition. So let \( p(z)=z^{2}-2x\cdot z+1 \) be the denominator and \( \alpha =x+\sqrt{x^{2}-1} \) and \( \alpha ^{-1} \) its zeroes. The partial fraction decomposition reads \[ F=\frac{1-xz}{1-2xz+z^{2}}=\frac{1}{2}\left( \frac{1}{1-\alpha z}+\frac{1}{1-\alpha ^{-1}z}\right) \] hence \( T_{n}(x)=\frac{1}{2}(\alpha ^{n}+\alpha ^{-n}) \). Note that the field \( Q(x)(\alpha ) \), being a finite dimensional extension field of \( Q(x) \) in characteristic 0, has a unique derivation extending \( \frac{d}{dx} \) on \( Q(x) \). We can therefore try to construct an annihilating differential operator for \( T_{n}(x) \) by combination of annihilating differential operators for \( \alpha ^{n} \) and \( \alpha ^{-n} \). In fact, \( L_{1}:=(\alpha -x)\frac{d}{dx}-n \) satisfies \( L_{1}[\alpha ^{n}]=0 \), and \( L_{2}:=(\alpha -x)\frac{d}{dx}+n \) satisfies \( L_{2}[\alpha ^{-n}]=0 \). A common multiple of \( L_{1} \) and \( L_{2} \) is easily found by solving an appropriate system of linear equations: \( L=(x^{2}-1)\left( \frac{d}{dx}\right) ^{2}+x\frac{d}{dx}-n^{2}=\left( (\alpha -x)\frac{d}{dx}+n\right) \cdot L_{1}=\left( (\alpha -x)\frac{d}{dx}-n\right) \cdot L_{2} \) It follows that both \( L[\alpha ^{n}]=0 \) and \( L[\alpha ^{-n}]=0 \), hence \( L[T_{n}(x)]=0 \). \begin{description} \item [Proof~2:]~ \end{description} Starting from the above equation, we compute a linear relation for the partial derivatives of \( F \). Write \( \partial _{x}=\frac{d}{dx} \) and \( \Delta _{z}=z\frac{d}{dz} \). One computes \[ \left( 1-2xz+z^{2}\right) \cdot F=1-xz\] \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \partial _{x}F=z-z^{3}\] \[ \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}^{2}F=4z^{2}-4z^{4}\] \[ \left( 1-2xz+z^{2}\right) ^{2}\cdot \Delta _{z}F=xz-2z^{2}+xz^{3}\] \[ \left( 1-2xz+z^{2}\right) ^{3}\cdot \partial _{x}\Delta _{z}F=z+2xz^{2}-6z^{3}+2xz^{4}+z^{5}\] \[ \left( 1-2xz+z^{2}\right) ^{3}\cdot \Delta _{z}^{2}F=xz+(2x^{2}-4)z^{2}-(2x^{2}-4)z^{4}-xz^{5}\] Solve a \( 6\times 6 \) system of linear equations over \( Q(x) \) to get \[ x\cdot \partial _{x}F+(x^{2}-1)\cdot \partial _{x}^{2}F-\Delta _{z}^{2}F=0\] This is equivalent to the claimed equation \( (x^{2}-1)\cdot T_{n}^{''}(x)+x\cdot T_{n}^{'}(x)-n^{2}\cdot T_{n}(x)=0 \). \begin{lyxsectionbibliography} \item [1] Bruno Haible: D-finite power series in several variables. \em Diploma thesis, University of Karlsruhe, June 1989. \em Sections 2.12 and 2.15. \end{lyxsectionbibliography} \end{document}