|
|
@ -119,55 +119,55 @@ |
|
|
|
} while (len > 0); |
|
|
|
} |
|
|
|
|
|
|
|
// Karatsuba-Multiplikation: O(n^(log 3 / log 2))
|
|
|
|
// Karatsuba-multiplication: O(n^(log 3 / log 2))
|
|
|
|
static void mulu_karatsuba (const uintD* sourceptr1, uintC len1, |
|
|
|
const uintD* sourceptr2, uintC len2, |
|
|
|
uintD* destptr); |
|
|
|
static void mulu_karatsuba_square (const uintD* sourceptr, uintC len, |
|
|
|
uintD* destptr); |
|
|
|
#include "cl_DS_mul_kara.h"
|
|
|
|
// karatsuba_threshold = Länge, ab der die Karatsuba-Multiplikation bevorzugt
|
|
|
|
// wird. Der Break-Even-Point bestimmt sich aus Zeitmessungen.
|
|
|
|
// Als Test dient (progn (time (! 5000)) nil), das viele kleine und einige
|
|
|
|
// ganz große Multiplikationen durchführt. Miß die Runtime.
|
|
|
|
// Unter Linux mit einem 80486: Auf einer Sparc 2:
|
|
|
|
// threshold time in 0.01 sec.
|
|
|
|
// 5 125 127
|
|
|
|
// 6 116 117
|
|
|
|
// 7 107 110
|
|
|
|
// 8 101 103
|
|
|
|
// 9 99 102
|
|
|
|
// 10 98 100
|
|
|
|
// 11 97 100
|
|
|
|
// 12 96 99
|
|
|
|
// 13 97 99
|
|
|
|
// 14 97 100
|
|
|
|
// 15 97 99
|
|
|
|
// 16 98 100
|
|
|
|
// 17 98 100
|
|
|
|
// 18 98 100
|
|
|
|
// 19 98 101
|
|
|
|
// 20 99 102
|
|
|
|
// 25 103 105
|
|
|
|
// 30 109 111
|
|
|
|
// 40 115 118
|
|
|
|
// 50 122 125
|
|
|
|
// 70 132 134
|
|
|
|
// 100 151 152
|
|
|
|
// 150 164 167
|
|
|
|
// 250 183 187
|
|
|
|
// 500 203 205
|
|
|
|
// 1000 203 205
|
|
|
|
// (clisp)(cln)
|
|
|
|
// Das Optimum scheint bei karatsuba_threshold = 12 zu liegen.
|
|
|
|
// Da das Optimum aber vom Verhältnis
|
|
|
|
// Zeit für uintD-Multiplikation / Zeit für uintD-Addition
|
|
|
|
// abhängt und die gemessenen Zeiten auf eine Unterschreitung des Optimums
|
|
|
|
// empfindlicher reagieren als auf eine Überschreitung des Optimums,
|
|
|
|
// sind wir vorsichtig und wählen einen Wert etwas über dem Optimum:
|
|
|
|
// karatsuba_threshold = length, from which on Karatsuba-multiplication is a
|
|
|
|
// gain and will be preferred. The break-even point is determined from
|
|
|
|
// timings. The test is (progn (time (! 5000)) nil), which does many small
|
|
|
|
// and some very large multiplications. The measured runtimes are:
|
|
|
|
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
|
|
|
|
// Machine: P-III/450MHz Machine: EV5/300MHz:
|
|
|
|
// threshold time in 0.01 sec. time in 0.01 sec.
|
|
|
|
// 5 3.55 2.29
|
|
|
|
// 10 2.01 1.71
|
|
|
|
// 15 1.61 1.61
|
|
|
|
// 20 1.51 1.60 <-
|
|
|
|
// 25 1.45 1.63
|
|
|
|
// 30 1.39 1.66
|
|
|
|
// 35 1.39 <- 1.67
|
|
|
|
// 40 1.39 1.71
|
|
|
|
// 45 1.40 1.75
|
|
|
|
// 50 1.41 1.78
|
|
|
|
// 55 1.41 1.79
|
|
|
|
// 60 1.44 1.84
|
|
|
|
// 65 1.44 1.85
|
|
|
|
// 70 1.43 1.85
|
|
|
|
// 75 1.45 1.89
|
|
|
|
// 80 1.47 1.91
|
|
|
|
// 90 1.51 1.96
|
|
|
|
// 100 1.53 1.97
|
|
|
|
// 150 1.62 2.13
|
|
|
|
// 250 1.75 2.19
|
|
|
|
// 500 1.87 2.17
|
|
|
|
// 1000 1.87 2.18
|
|
|
|
// 2000 1.88 2.17
|
|
|
|
// The optimum appears to be between 20 and 40. But since that optimum
|
|
|
|
// depends on the ratio time(uintD-mul)/time(uintD-add) and the measured
|
|
|
|
// times are more sensitive to a shift towards lower thresholds we are
|
|
|
|
// careful and choose a value at the upper end:
|
|
|
|
#if CL_USE_GMP
|
|
|
|
const unsigned int cl_karatsuba_threshold = 35; |
|
|
|
#else
|
|
|
|
const unsigned int cl_karatsuba_threshold = 16; |
|
|
|
// (In CLN version <= 1.0.3 cl_karatsuba_threshold was always 16)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0 // Lohnt sich nicht
|
|
|
|
#if 0 // Doesn't seem to be worth the effort
|
|
|
|
|
|
|
|
// FFT-Multiplikation nach Nussbaumer: O(n log n log log n)
|
|
|
|
#include "cl_DS_mul_nuss.h"
|
|
|
@ -246,58 +246,112 @@ |
|
|
|
|
|
|
|
// FFT-Multiplikation in Z/pZ: O(n^1.29)
|
|
|
|
#include "cl_DS_mul_fftm.h"
|
|
|
|
// fftm_threshold = Länge, ab der die FFT-Multiplikation mod m bevorzugt
|
|
|
|
// wird. Der Break-Even-Point bestimmt sich aus Zeitmessungen.
|
|
|
|
// Multiplikation zweier N-Wort-Zahlen unter
|
|
|
|
// Linux mit einem 80486: Solaris, Sparc 10/20:
|
|
|
|
// fftm_threshold = length, from which on FFT multiplication mod m is a gain
|
|
|
|
// and will be preferred. The break-even point is determined from timings.
|
|
|
|
// The times to multiply two N-limb numbers are:
|
|
|
|
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
|
|
|
|
// Machine: P-III/450MHz Machine: EV5/300MHz:
|
|
|
|
// N kara fftm (time in sec.) kara fftm
|
|
|
|
// 1000 0.36 0.54 0.08 0.10
|
|
|
|
// 5000 4.66 2.48 1.01 0.51
|
|
|
|
// 25000 61.1 13.22 13.23 2.73
|
|
|
|
// 32500 91.0 27.5 20.0 5.8
|
|
|
|
// 35000 102.1 27.5 21.5 5.6
|
|
|
|
// 50000 183 27.6 40.7 5.6
|
|
|
|
// Multiplikation zweier N-Wort-Zahlen unter
|
|
|
|
// Linux mit einem 80486: Solaris, Sparc 10/20:
|
|
|
|
// N kara fftm (time in sec.) kara fftm
|
|
|
|
// 1000 0.36 0.54 0.08 0.10
|
|
|
|
// 1260 0.52 0.50 0.11 0.10
|
|
|
|
// 1590 0.79 0.51 0.16 0.10
|
|
|
|
// 2000 1.09 1.07 0.23 0.21
|
|
|
|
// 2520 1.57 1.08 0.33 0.21
|
|
|
|
// 3180 2.32 1.08 0.50 0.21
|
|
|
|
// 4000 3.29 2.22 0.70 0.41
|
|
|
|
// 5040 4.74 2.44 0.99 0.50
|
|
|
|
// N1 N2 kara fftm (time in sec.) kara fftm
|
|
|
|
// 1250 1250 0.51 0.50 0.11 0.10
|
|
|
|
// 1250 1580 0.70 0.50 0.15 0.10
|
|
|
|
// 1250 2000 0.89 0.51 0.18 0.10
|
|
|
|
// 1250 2250 0.99 0.51 0.21 0.10
|
|
|
|
// 1250 2500 1.08 1.03 <--- 0.22 0.21
|
|
|
|
// 1250 2800 1.20 1.07 0.26 0.21
|
|
|
|
// 1250 3100 1.35 1.07 0.28 0.21
|
|
|
|
// Es gibt also noch Werte von (len1,len2) mit 1250 <= len1 <= len2, bei
|
|
|
|
// denen "kara" schneller ist als "fftm", aber nicht viele und dort auch
|
|
|
|
// nur um 5%. Darum wählen wir ab hier die FFT-Multiplikation.
|
|
|
|
const unsigned int cl_fftm_threshold = 1250; // muß stets >= 6 sein (sonst Endlosrekursion!)
|
|
|
|
// 1000 0.005 0.016 0.018 0.028
|
|
|
|
// 1500 0.009 0.012 0.032 0.028
|
|
|
|
// 2000 0.015 0.025 0.053 0.052 <-
|
|
|
|
// 2500 0.022 0.026 0.067 0.052
|
|
|
|
// 3000 0.029 0.027 <- 0.093 0.053
|
|
|
|
// 3500 0.035 0.037 0.12 0.031
|
|
|
|
// 4000 0.045 0.028 0.16 0.12
|
|
|
|
// 5000 0.064 0.050 0.20 0.11
|
|
|
|
// 7000 0.110 0.051 0.37 0.20
|
|
|
|
// 10000 0.19 0.11 0.61 0.26
|
|
|
|
// 20000 0.59 0.23 1.85 0.55
|
|
|
|
// 30000 1.10 0.25 3.79 0.56
|
|
|
|
// 50000 2.52 1.76 8.15 1.37
|
|
|
|
// 70000 4.41 2.30 14.09 2.94
|
|
|
|
// 100000 7.55 1.53 24.48 2.96
|
|
|
|
// More playing around with timings reveals that there are some values where
|
|
|
|
// FFT multiplication is somewhat slower than Karatsuba, both for len1==len2
|
|
|
|
// and also if len1<len2.
|
|
|
|
// Here are the timigs from CLN version <= 1.0.3:
|
|
|
|
// // Linux mit einem 80486: Solaris, Sparc 10/20:
|
|
|
|
// // N kara fftm (time in sec.) kara fftm
|
|
|
|
// // 1000 0.36 0.54 0.08 0.10
|
|
|
|
// // 5000 4.66 2.48 1.01 0.51
|
|
|
|
// // 25000 61.1 13.22 13.23 2.73
|
|
|
|
// // 32500 91.0 27.5 20.0 5.8
|
|
|
|
// // 35000 102.1 27.5 21.5 5.6
|
|
|
|
// // 50000 183 27.6 40.7 5.6
|
|
|
|
// // Multiplikation zweier N-Wort-Zahlen unter
|
|
|
|
// // Linux mit einem 80486: Solaris, Sparc 10/20:
|
|
|
|
// // N kara fftm (time in sec.) kara fftm
|
|
|
|
// // 1000 0.36 0.54 0.08 0.10
|
|
|
|
// // 1260 0.52 0.50 0.11 0.10
|
|
|
|
// // 1590 0.79 0.51 0.16 0.10
|
|
|
|
// // 2000 1.09 1.07 0.23 0.21
|
|
|
|
// // 2520 1.57 1.08 0.33 0.21
|
|
|
|
// // 3180 2.32 1.08 0.50 0.21
|
|
|
|
// // 4000 3.29 2.22 0.70 0.41
|
|
|
|
// // 5040 4.74 2.44 0.99 0.50
|
|
|
|
// // N1 N2 kara fftm (time in sec.) kara fftm
|
|
|
|
// // 1250 1250 0.51 0.50 0.11 0.10
|
|
|
|
// // 1250 1580 0.70 0.50 0.15 0.10
|
|
|
|
// // 1250 2000 0.89 0.51 0.18 0.10
|
|
|
|
// // 1250 2250 0.99 0.51 0.21 0.10
|
|
|
|
// // 1250 2500 1.08 1.03 <--- 0.22 0.21
|
|
|
|
// // 1250 2800 1.20 1.07 0.26 0.21
|
|
|
|
// // 1250 3100 1.35 1.07 0.28 0.21
|
|
|
|
// // Es gibt also noch Werte von (len1,len2) mit 1250 <= len1 <= len2, bei
|
|
|
|
// // denen "kara" schneller ist als "fftm", aber nicht viele und dort auch
|
|
|
|
// // nur um 5%. Darum wählen wir ab hier die FFT-Multiplikation.
|
|
|
|
// // 140000: 4.15s 12.53 23.7
|
|
|
|
// // 14000: 4.16s
|
|
|
|
// // 11000: 4.16s
|
|
|
|
// // 9000: 1.47s
|
|
|
|
// // 7000: 1.48s
|
|
|
|
// // 1400: 1.42s 2.80 6.5
|
|
|
|
#if CL_USE_GMP
|
|
|
|
const unsigned int cl_fftm_threshold = 2500; |
|
|
|
// must be >= 6 (else infinite recursion)
|
|
|
|
#else
|
|
|
|
// Use the old default value from CLN version <= 1.0.3 as a crude estimate.
|
|
|
|
const unsigned int cl_fftm_threshold = 1250; |
|
|
|
#endif
|
|
|
|
// This is the threshold for multiplication of equally sized factors.
|
|
|
|
// When the lengths differ much, the threshold varies:
|
|
|
|
// len2 = 3000 len1 >= 800
|
|
|
|
// len2 = 3500 len1 >= 700
|
|
|
|
// len2 = 4000 len1 >= 580
|
|
|
|
// len2 = 4500 len1 >= 430
|
|
|
|
// len2 = 5000 len1 >= 370
|
|
|
|
// len2 = 5500 len1 >= 320
|
|
|
|
// len2 = 6000 len1 >= 500
|
|
|
|
// len2 = 7000 len1 >= 370
|
|
|
|
// len2 = 8000 len1 >= 330
|
|
|
|
// len2 = 9000 len1 >= 420
|
|
|
|
// len2 =10000 len1 >= 370
|
|
|
|
// len2 =11000 len1 >= 330
|
|
|
|
// len2 =12000 len1 >= 330
|
|
|
|
// len2 =13000 len1 >= 350
|
|
|
|
// OS: Linux 2.2, intDsize==32, OS: TRU64/4.0, intDsize==64,
|
|
|
|
// Machine: P-III/450MHz Machine: EV5/300MHz:
|
|
|
|
// len2 = 3000 len1 >= 2600 len1 >= 800
|
|
|
|
// len2 = 4000 len1 >= 1500 len1 >= 700
|
|
|
|
// len2 = 5000 len1 >= 1100 len1 >= 600
|
|
|
|
// len2 = 6000 len1 >= 1300 len1 >= 700
|
|
|
|
// len2 = 7000 len1 >= 1100 len1 >= 600
|
|
|
|
// len2 = 8000 len1 >= 900 len1 >= 500
|
|
|
|
// len2 = 9000 len1 >= 1300 len1 >= 600
|
|
|
|
// len2 = 10000 len1 >= 1100 len1 >= 500
|
|
|
|
// len2 = 11000 len1 >= 1000 len1 >= 500
|
|
|
|
// len2 = 12000 len1 >= 900 len1 >= 700
|
|
|
|
// len2 = 13000 len1 >= 900 len1 >= 500
|
|
|
|
// len2 = 14000 len1 >= 900 len1 >= 600
|
|
|
|
// Here are the timigs from CLN version <= 1.0.3:
|
|
|
|
// // len2 = 3000 len1 >= 800
|
|
|
|
// // len2 = 3500 len1 >= 700
|
|
|
|
// // len2 = 4000 len1 >= 580
|
|
|
|
// // len2 = 4500 len1 >= 430
|
|
|
|
// // len2 = 5000 len1 >= 370
|
|
|
|
// // len2 = 5500 len1 >= 320
|
|
|
|
// // len2 = 6000 len1 >= 500
|
|
|
|
// // len2 = 7000 len1 >= 370
|
|
|
|
// // len2 = 8000 len1 >= 330
|
|
|
|
// // len2 = 9000 len1 >= 420
|
|
|
|
// // len2 =10000 len1 >= 370
|
|
|
|
// // len2 =11000 len1 >= 330
|
|
|
|
// // len2 =12000 len1 >= 330
|
|
|
|
// // len2 =13000 len1 >= 350
|
|
|
|
// Let's choose the following condition:
|
|
|
|
#if CL_USE_GMP
|
|
|
|
const unsigned int cl_fftm_threshold1 = 600; |
|
|
|
#else
|
|
|
|
// Use the old default values from CLN version <= 1.0.3 as a crude estimate.
|
|
|
|
const unsigned int cl_fftm_threshold1 = 330; |
|
|
|
#endif
|
|
|
|
const unsigned int cl_fftm_threshold2 = 2*cl_fftm_threshold; |
|
|
|
// len1 > cl_fftm_threshold1 && len2 > cl_fftm_threshold2
|
|
|
|
// && len1 >= cl_fftm_threshold1 + cl_fftm_threshold/(len2-cl_fftm_threshold1)*(cl_fftm_threshold-cl_fftm_threshold1).
|
|
|
@ -315,7 +369,7 @@ |
|
|
|
return cl_false; |
|
|
|
} |
|
|
|
|
|
|
|
#if 0 // Lohnt sich nicht
|
|
|
|
#if 0 // Doesn't seem to be worth the effort
|
|
|
|
|
|
|
|
// FFT-Multiplikation über den komplexen Zahlen.
|
|
|
|
#include "cl_DS_mul_fftc.h"
|
|
|
|